首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bayesian Landmark Learning for Mobile Robot Localization   总被引:10,自引:0,他引:10  
To operate successfully in indoor environments, mobile robots must be able to localize themselves. Most current localization algorithms lack flexibility, autonomy, and often optimality, since they rely on a human to determine what aspects of the sensor data to use in localization (e.g., what landmarks to use). This paper describes a learning algorithm, called BaLL, that enables mobile robots to learn what features/landmarks are best suited for localization, and also to train artificial neural networks for extracting them from the sensor data. A rigorous Bayesian analysis of probabilistic localization is presented, which produces a rational argument for evaluating features, for selecting them optimally, and for training the networks that approximate the optimal solution. In a systematic experimental study, BaLL outperforms two other recent approaches to mobile robot localization.  相似文献   

2.
《Advanced Robotics》2013,27(6-7):923-939
A wheel-type mobile robot is simply able to localize with odometry. However, for mobile agricultural robots, it is necessary to consider that the environment is uneven terrain. Therefore, odometry is unreliable and it is necessary to augment the odometry by measuring the position of the robot relative to known objects in the environments. This paper describes the application of localization based on the DC magnetic field that occurs in the environment on mobile agricultural robots. In this research, a magnetic sensor is applied to scan the DC magnetic field to build a magnetic database. The robot localizes by matching magnetic sensor readings against the magnetic database. The experimental results indicate that the robot is able to localize accurately with the proposed method and the cumulative error can be eliminated by applying the localization results to compensate for the odometry.  相似文献   

3.
A concurrent localization method for multiple robots using ultrasonic beacons is proposed. This method provides a high-accuracy solution using only low-price sensors. To measure the distance of a mobile robot from a beacon at a known position, the mobile robot alerts one beacon to send out an ultrasonic signal to measure the traveling time from the beacon to the mobile robot. When multiple robots requiring localization are moving in the same block, it is necessary to have a schedule to choose the measuring sequence in order to overcome constant ultrasonic signal interference among robots. However, the increased time delay needed to estimate the positions of multiple robots degrades the localization accuracy. To solve this problem, we propose an efficient localization algorithm for multiple robots, where the robots are in groups of one master robot and several slave robots. In this method, when a master robot calls a beacon, all the group robots simultaneously receive an identical ultrasonic signal to estimate their positions. The effectiveness of the proposed algorithm has been verified through experiments.  相似文献   

4.
The localization problem is important in mobile robots and wireless sensor network and has been studied for many years. Among many localization methods, the hop-count based approach is simple and scalable; however, the localization accuracy is not satisfactory if the node density is low. To solve this problem, in this paper a multi-robot approach is proposed to utilize the cooperation and mobility of the robots to improve the node distribution (density), thus enhancing the hop-count based localization. By an auction-based task allocation scheme, the robots can negotiate with the static sensor nodes and then select the most suitable robots to move to the area of sparse node density, thus increasing the localization accuracy for the static sensor nodes. On the other hand, the robots also can localize themselves with the help of the static sensor nodes. The efficacy of this approach is shown by simulation.  相似文献   

5.
A new area expansion algorithm for the localization scheme, using temporary beacons, is proposed in this paper. The effective area of the active beacons is limited by the strength of the ultrasonic signals in a noisy environment. When a mobile robot needs to move into a hazardous area or into an unstructured environment where the beacons with pre-specified position information are not available, the localization may solely rely on dead reckoning sensors such as encoders. To overcome the error accumulation by using dead-reckoning, a new scheme is developed, in this paper, in which the mobile robot carries a few temporary beacons which do not have any pre-stored position information. When the mobile robot encounters a dangerous or unstructured environment, it utilizes the temporary beacons to localize itself. An auto-calibration algorithm has been developed to provide the position information to the temporary beacons before they are used for the localization. With these temporary beacons and the auto-calibration algorithm, mobile robots can safely pass unstructured areas. The effectiveness of the temporary beacons and auto-calibration algorithm is verified through real experiments of mobile robot navigation.  相似文献   

6.
Performance analysis of multirobot Cooperative localization   总被引:2,自引:0,他引:2  
This paper studies the accuracy of position estimation for groups of mobile robots performing cooperative localization. We consider the case of teams comprised of possibly heterogeneous robots and provide analytical expressions for the upper bound on their expected positioning uncertainty. This bound is determined as a function of the sensors' noise covariance and the eigenvalues of the relative position measurement graph (RPMG), i.e., the weighted directed graph which represents the network of robot-to-robot exteroceptive measurements. The RPMG is employed as a key element in this analysis, and its properties are related to the localization performance of the team. It is shown that, for a robot group of a certain size, the maximum expected rate of uncertainty increase is independent of the accuracy and number of relative position measurements and depends only on the accuracy of the proprioceptive and orientation sensors on the robots. Additionally, the effects of changes in the topology of the RPMG are studied, and it is shown that, at steady-state, these reconfigurations do not inflict any loss in localization precision. Experimental data, as well as simulation results that validate the theoretical analysis, are presented.  相似文献   

7.
Most current mobile robots are designed to determine their actions according to their positions. Before making a decision, they need to localize themselves. Thus, their observation strategies are mainly for self-localization. However, observation strategies should not only be for self-localization but also for decision making. We propose an observation strategy that enables a mobile robot to make a decision. It enables a robot equipped with a limited viewing angle camera to make decisions without self-localization. A robot can make a decision based on a decision tree and on prediction trees of observations constructed from its experiences. The trees are constructed based on an information criterion for the action decision, not for self-localization or state estimation. The experimental results with a four legged robot are shown and discussed.  相似文献   

8.
Mobile robots in real-life settings would benefit from being able to localize and track sound sources. Such a capability can help localizing a person or an interesting event in the environment, and also provides enhanced processing for other capabilities such as speech recognition. To give this capability to a robot, the challenge is not only to localize simultaneous sound sources, but to track them over time. In this paper we propose a robust sound source localization and tracking method using an array of eight microphones. The method is based on a frequency-domain implementation of a steered beamformer along with a particle filter-based tracking algorithm. Results show that a mobile robot can localize and track in real-time multiple moving sources of different types over a range of 7 m. These new capabilities allow a mobile robot to interact using more natural means with people in real-life settings.  相似文献   

9.
This paper examines the problem of cooperative localization for the case of large groups of mobile robots. A Kalman filter estimator is implemented and tested for this purpose. The focus of this paper is to examine the effect on localization accuracy of the number N of participating robots and the accuracy of the sensors employed. More specifically, we investigate the improvement in localization accuracy per additional robot as the size of the team increases. Furthermore, we provide an analytical expression for the upper bound on the positioning uncertainty increase rate for a team of N robots as a function of N, the odometric and orientation uncertainty for the robots, and the accuracy of a robot tracker measuring relative positions between pairs of robots. The analytical results derived in this paper are validated both in simulation and experimentally for different test cases.  相似文献   

10.
基于声音的分布式多机器人相对定位   总被引:1,自引:0,他引:1  
提出了一种基于声音的分布式多机器人相对定位方法.首先,每个机器人通过声源定位算法估计发声机器人在其局部坐标系下的坐标;然后,每个机器人(不含发声机器人)通过无线通信方式将发声机器人在其坐标系下的坐标广播给所有其他机器人,通过坐标变换每个机器人可计算出所有其他机器人在其坐标系下的坐标,从而实现分布式相对定位.理论推导及实验证明只要两个机器人先后发声,通过本文所提方法即可实现多机器人相对定位.室内外环境中采用6个自制小型移动机器人实验表明,所提方法在3米的范围内可实现16厘米的相对定位精度.  相似文献   

11.
The strength of appearance-based mapping models for mobile robots lies in their ability to represent the environment through high-level image features and to provide human-readable information. However, developing a mapping and a localization method using these kinds of models is very challenging, especially if robots must deal with long-term mapping, localization, navigation, occlusions, and dynamic environments. In other words, the mobile robot has to deal with environmental appearance change, which modifies its representation of the environment. This paper proposes an indoor appearance-based mapping and a localization method for mobile robots based on the human memory model, which was used to build a Feature Stability Histogram (FSH) at each node in the robot topological map. This FSH registers local feature stability over time through a voting scheme, and the most stable features were considered for mapping, for Bayesian localization and for incrementally updating the current appearance reference view in the topological map. The experimental results are presented using an omnidirectional images dataset acquired over the long-term and considering: illumination changes (time of day, different seasons), occlusions, random removal of features, and perceptual aliasing. The results include a comparison with the approach proposed by Dayoub and Duckett (2008) [19] and the popular Bag-of-Words (Bazeille and Filliat, 2010) [35] approach. The obtained results confirm the viability of our method and indicate that it can adapt the internal map representation over time to localize the robot both globally and locally.  相似文献   

12.
Cooperative localization method for multi-robot based on PF-EKF   总被引:1,自引:0,他引:1  
A method of cooperative localization for multi-robot in an unknown environment is described. They share information and perform localization by using relative observations and necessary communication. At initial time, robots do not know their positions. Once the robot that can obtain the absolute position information has its position, other robots use particle filter to fuse relative observations and maintain a set of samples respectively representing their positions. When the particles are close to s Gsussian distribution after a number of steps, we switch to an EKF to track the pose of the robots. Simulation results and real experiment show that PF-EKF method combines the robustness of PF and the efficiency of EKF. Robots can share the absolute position information and effectively localize themselves in an unknown environment.  相似文献   

13.
针对未知环境下多机器人主动SLAM(simultaneous localization and mapping)存在不能完全遍历环境、定位精度不理想等问题,本文基于EKF-SLAM(extended Kalman filter-simultaneous localization and mapping)算法提出一种多机器人主动SLAM算法。通过引入吸引因子,增强多机器人系统之间的交流,提升机器人自身定位精度与环境建图精度,同时又引导多机器人团队进行探索环境。当同一地标被多个机器人观测到,采用凸组合融合方法融合各个机器人对地标的估计,从而降低被估计地标的不确定度。仿真结果表明,所提算法能够对环境进行覆盖遍历,提升对地标估计的定位精度。  相似文献   

14.
This paper deals with the development of acoustic source localization algorithms for service robots working in real conditions. One of the main utilizations of these algorithms in a mobile robot is that the robot can localize a human operator and eventually interact with him/herself by means of verbal commands. The location of a speaking operator is detected with a microphone array based algorithm; localization information is passed to a navigation module which sets up a navigation mission using knowledge of the environment map. In fact, the system we have developed aims at integrating acoustic, odometric and collision sensors with the mobile robot control architecture. Good performance with real acoustic data have been obtained using neural network approach with spectral subtraction and a noise robust voice activity detector. The experiments show that the average absolute localization error is about 40 cm at 0 dB and about 10 cm at 10 dB of SNR for the named localization. Experimental results describing mobile robot performance in a talker following task are reported.  相似文献   

15.
提出了一种面向地下空间探测的移动机器人定位与感知方法。首先,针对地下空间的结构退化问题,构建了基于因子图的激光雷达/里程计/惯性测量单元紧耦合融合框架;推导了高精度惯性测量单元/里程计的预积分模型,利用因子图算法实现对移动机器人运动状态及传感器参数的同步估计。同时,提出了基于激光雷达/红外相机融合的目标识别方法,能够对弱光照环境下的多种目标进行识别与相对定位。试验结果表明,在结构退化环境中,本文方法能够将移动机器人的定位精度提升50%以上,并对弱光照环境中的目标实现厘米级的相对定位精度。  相似文献   

16.
This paper presents a novel localization method for small mobile robots. The proposed technique is especially designed for the Robot@Factory, a new robotic competition which is started in Lisbon in 2011. The real-time localization technique resorts to low-cost infra-red sensors, a map-matching method and an Extended Kalman Filter (EKF) to create a pose tracking system that performs well. The sensor information is continuously updated in time and space according to the expected motion of the robot. Then, the information is incorporated into the map-matching optimization in order to increase the amount of sensor information that is available at each moment. In addition, the Particle Swarm Optimization (PSO) relocates the robot when the map-matching error is high, meaning that the map-matching is unreliable and the robot gets lost. The experiments presented in this paper prove the ability and accuracy of the presented technique to locate small mobile robots for this competition. Extensive results show that the proposed method presents an interesting localization capability for robots equipped with a limited amount of sensors, but also less reliable sensors.  相似文献   

17.
协作策略是多机器人主动同时定位与建图(SLAM)的关键。文中提出一种多机器人相互校正的协作策略, 称为协助校正。 该方法通过优化机器人对陆标的观测来提高定位与建图的精度, 共包括弱协助校正和强协助校正两种模式。 前者是一种间接的协助模式, 可应用于所有机器人自身定位均不准确的情形。 后者是一种直接的协助模式, 由自身定位精度较高的机器人主动校正其它机器人及相应陆标。 文中将这两种协助校正模式利用状态机统一到多机器人主动SLAM应用中。在仿真实验中将协助校正与其它多机器人主动SLAM方法进行对比以验证其精度优势, 并与单机器人主动SLAM对比以验证其导航代价极低的优势。最后在两台Poineer3-DX移动机器人上进行真实环境实验,实验结果证实协助校正方法可在实际应用中有效提高多机器人主动SLAM的探索效率和精度。  相似文献   

18.
室内自主式移动机器人定位方法   总被引:3,自引:0,他引:3  
定位是确定机器人在其工作环境中所处位置的过程.应用各种传感器感知信息实现可靠的定位是自主式移动机器人最基本、也是最重要的一项功能之一.本文对室内自主式移动机器人的定位技术进行了综述,介绍了当前自主式移动机器人定位方法的研究现状.同时,对国内外具有典型性的研究方法进行了较洋细的介绍,并重点提出了几种室内自主式移动机器人通用的定位方法,对其中的地图构造、位姿估计方法进行了详细介绍.最后,论述了自主式移动机器人定位系统与地图构造中所面临的主要问题及其解决方法并指出了该领域今后的研究方向.  相似文献   

19.
Spherical mobile robots are a novel type of mobile robots having some advantages in motion over other ordinary mobile robots. The advantages can be related to their symmetric spherical shape. Despite many works being conducted in recent years on spherical mobile robots, it seems that finding the best driving mechanism with higher efficiency still needs much research. In this article, a novel type of spherical mobile robot is introduced. This robot has a hybrid structure of the spherical robots and ordinary four legged or quadruped robots. Adding legs to the spherical robot reduces some disadvantages of its behavior. After introduction of the mentioned robot, its dynamic model based on Lagrange equations is obtained. The accuracy of the developed dynamic model in tracking a trajectory is verified through a dynamic simulation. Experimental results in tracking a square trajectory is presented to show the verification.  相似文献   

20.
首先,对粒子滤波器的原理进行了简要阐述。然后详细描述了基于粒子滤波器的移动机器人自定位算法——蒙特卡洛定位算法。在ROS(Robot Operating System)平台上对该算法进行了仿真实验并分析了其性能。最后,对蒙特卡洛粒子滤波定位方法用于移动机器人定位进行了总结。结果表明,MCL(蒙特卡洛)算法是一种精确鲁棒的移动机器人概率定位方法,可对解决移动机器人的定位问题提供有意义的参考。提出的机器人自定位方法为机器人在Robocup竞赛中自主执行各种作业提供定位支持,已在2013年中国机器人大赛获奖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号