首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of activated carbon fibers (ACFs) and their surface characteristics were investigated before and after electrochemical polarization. The adsorption kinetics of m-cresol showed the dependence on polarized potential, and the adsorption rate constant increased by 77.1%, from 6.38 × 10−3 min−1 at open-circuit (OC) to 1.13 × 10−2 min−1 at polarization of 600 mV. The adsorption isotherms at different potentials were in good agreement with Langmuir isotherm model, and the maximum adsorption capacity increased from 2.28 mmol g−1 at OC to 3.67 mmol g−1 at polarized potential of 600 mV. These indicated that electrochemical polarization could effectively improve the adsorption rate and capacity of ACFs. The surface characteristics of ACFs before and after electrochemical polarization were evaluated by N2 adsorption-desorption isotherms, scanning electron microscope (SEM), zeta potential and Fourier transform infrared spectroscopy (FTIR). The results showed that the BET specific surface area and pore size increased as the potential rose. However, the surface chemical properties of ACFs hardly changed under electrochemical polarization of less than 600 mV. This study was beneficial to understand the mechanism of electrochemically enhanced adsorption.  相似文献   

2.
The composite films of activated carbon fibers (ACFs) and carbon nanofibers (CNFs) are prepared via chemical vapor deposition of CNFs onto ACFs in different times from 0.5 to 2 h and their electrosorption behaviors in NaCl solution are investigated. The morphology, structure, porous and electrochemical properties are characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, N2 adsorption at 77 K, contact angle goniometer and electrochemical workstation, respectively. The results show that CNFs have been hierarchically grown on the surface of ACFs and the as grown ACF/CNF composite films have less defects, higher specific capacitances, more suitable mesoporous structure and more hydrophilic surface than the pristine ACFs, which is beneficial to their electrosorption performance. The ACFs/CNFs with CNFs deposited in 1 h exhibit an optimized NaCl removal ratio of 80%, 55% higher than that of ACFs and the NaCl electrosorption follows a Langmuir isotherm with a maximum electrosorption capacity of 17.19 mg/g.  相似文献   

3.
The potential of electroadsorption/desorption on activated carbon for waste water treatment of industrial effluents is studied. Adsorption isotherms of hydrophobic differently charged model substances on activated carbon were measured in order to obtain specific information about the influence of the charge (+1,–1 and 0) on the adsorbability of comparable, aromatic species and the influence of the bed potential on the adsorption equilibria. In all these cases the adsorption equilibria show a dependence on applied potential in electrolyte of approximately 1m ionic strength. With electrosorption from aqueous solution, a fivefold enhancement of the concentration in one potential controlled adsorption/desorption cycle is achievable. The use of the solvent methanol instead of water for desorption allows for a concentration enhancement by a factor of hundred in the desorptive step. The adsorption capacity of the activated carbon changes only slightly with cycle number. Two cell designs for the performance of potential controlled adsorption/desorption cycles on the large scale are discussed.  相似文献   

4.
5.
Qiuli Lu  George A. Sorial   《Carbon》2004,42(15):3133-3142
The impact of adsorbent pore size distribution (PSD) on adsorption mechanism for the multi solute system was evaluated in this study. Anoxic and oxic adsorption equilibrium for the single solute (phenol), binary solute (phenol/2-methylphenol) and ternary solute (phenol/2-methylphenol/2-ethylphenol) systems on one granular activated carbon (GAC) F400 and two types of activated carbon fibers (ACFs), namely, ACC-10 and ACC-15, were determined. F400 has a wide PSD, while ACC-10 and ACC-15 have narrow PSD and their critical pore diameters are 8.0 Å and 12.8 Å, respectively. In single solute adsorption, the increase of adsorptive capacity under oxic conditions as compared to anoxic ones was related to the PSD of the adsorbent. Binary solute adsorption on ACC-10 and ternary solute adsorption on ACC-15 indicated no impact of the presence of molecular oxygen on the adsorptive capacity and the adsorption isotherms were well predicted by the ideal adsorbed solution theory (IAST). Significant differences between oxic and anoxic isotherms were noticed for other multicomponent adsorption systems. The narrow PSD of ACFs was effective in hampering the oligomerization of phenolic compounds under oxic conditions. Such a phenomenon will provide accurate predictions of fixed bed adsorbers in water treatment systems.  相似文献   

6.
Chromium is a common harmful pollutant with high toxicity and low bearing capacity of soil and water. Excellent salinity resistance, a wide p H range, and high regeneration capacity were essential for qualified adsorbents used in removing hexavalent chromium(Cr(VI)) from polluted water. Herein, iron oxalate modified weak basic resin(IO@D301) for the removal of Cr(VI) was prepared by the impregnation method. The IO@D301 was characterized by scanning electron microscope(SEM), Fourier transform infrared spectroscopy(FTIR), X-Ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS). Owing to abundant amine, carboxyl groups and iron ions existing on the surface, IO@D301 possesses high adsorption and salinity resistance capacity for Cr(VI). The maximum adsorption capacity of IO301 towards Cr(VI) reached 201.30 mg·g~(-1) at 293 K and a p H of 5. The adsorption equilibrium was well fitted by the Freundlich model, and the adsorption process was described by the pseudofirst-order kinetics model as spontaneous and exothermic. The mechanism may be identified as electrostatic attraction, coordination, and reduction, which was confirmed by FT-IR and X-ray photoelectron spectroscopy.  相似文献   

7.
Magnetic starch microspheres(AAM-MSM) were synthesized via an inverse emulsion graft copolymerization by using mechanically activated cassava starch(MS) as a crude material, acrylic acid(AA) and acrylamide(AM) as graft copolymer monomers, and methyl methacrylate(MMA) as the dispersing agent and used as an adsorbent for the removal of Cd(II) ions from aqueous solution. Fourier-transform infrared spectroscopy(FT-IR), X-ray photoelectron spectroscopy(XPS), scanning electron microscopy(SEM), and vibrating sample magnetometry(VSM) were used to characterize the AAM-MSM adsorbent. The results indicated that AA, AM, and MMA were grafted to the MS, and the Fe_3 O_4 nanoparticles were encapsulated in the AAM-MSM adsorbent microspheres.The adsorbent exhibited a smooth surface, uniform size, and good sphericity because of the addition of the MMA and provided more adsorption sites for the Cd(II) ions. The maximum adsorption capacity of Cd(II) on the AAM-MSM was 39.98 mg·g~(-1). The adsorbents were superparamagnetic, and the saturation magnetization was 16.7 A·m~2·kg~(-1). Additionally, the adsorption isotherms and kinetics of the adsorption process were further investigated. The process of Cd(II) ions adsorbed onto the AAM-MSM could be described more favorably by the pseudo-second-order kinetic and Langmuir isothermal adsorption models, which suggested that the chemical reaction process dominated the adsorption process for the Cd(II) and chemisorption was the rate-controlling step during the Cd(II) removal process.  相似文献   

8.
Polypyrrole (PPy) and air‐plasma activated carbon nanotube (CNT) composites (P‐CNT‐PPy) prepared via in situ chemical oxidative polymerization are studied to improve the electrosorption capacity of CNT‐based electrodes for the removal of lead ions. For comparison, the PPy prepared on the CNTs without plasma activation is labeled as CNT/PPy. The morphology of the composite was observed by scanning electron microscopy (SEM), and pore structures were studied by N2 adsorption‐desorption isotherms. The electrochemical capacitance properties of the composite were measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge‐discharge in lead solutions. With plasma‐activation, the specific surface area of the P‐CNT‐PPy composite is larger than that of CNT/PPy. Additionally, the P‐CNT‐PPy composites exhibit excellent electrochemical performance in lead solution, with a higher specific capacitance and smaller charge transfer resistance than that of CNT/PPy. XPS elemental analysis and electrosorption and regeneration results show that the electrosorption and desorption process is reversible under a voltage of 450 mV. The electrosorption kinetics of P‐CNT‐PPy electrodes abide by pseudo‐second‐order model reaction. The lead ion electrosorption experiments agree with the Langmuir model, and the equilibrium electrosorption capacity of the P‐CNT‐PPy electrodes is 3.6 and 1.3 times higher than that of the CNT and CNT/PPy, respectively. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41793.  相似文献   

9.
In this study, activated carbon fibers (ACFs) were surface modified with fluorine and mixed oxygen and fluorine gas to investigate the relationship between changes in surface properties by nitrogen and hydrogen adsorption capacity. The changes in surface properties of modified activated carbon fibers were investigated using X-ray photoelectron spectroscopy (XPS) and compared before and after surface treatment. The specific surface area and pore structures were characterized by the nitrogen adsorption isotherm at liquid nitrogen temperature. Hydrogen adsorption isotherms were obtained at 77 K and 1 bar by a volumetric method. The hydrogen adsorption capacity of fluorinated activated carbon fibers was the smallest of all samples. However, the bulk density in this sample was largest. This result could be explained by virial coefficients. The interaction of hydrogen-surface carbon increased with fluorination as the first virial coefficient. Also, the best fit adsorption model was found to explain the adsorption mechanism using a nonlinear curve fit. According to the goodness-of-fit, the Langmuir–Freundlich isotherm model was in good agreement with experimental data from this study.  相似文献   

10.
Adsorption of nitrobenzene, aniline and water on copper chromite has been investigated at the temperatures (483–558 K) and partial pressures (0–40 kPa) involved in the catalytic process (viz. hydrogenation of nitrobenzene), using the gas chromatographic pulse technique. The adsorption of reaction species was found to follow the Freundlich adsorption isotherm. The data on isosteric heats of adsorption (at different surface coverages) were obtained from the adsorption isotherms. The results indicated that nitrobenzene and water are physically adsorbed, whereas aniline is chemisorbed on the catalyst. The variation in the heat of adsorption with surface coverage for the adsorption of aniline indicated the presence of surface heterogeneity on the copper chromite.  相似文献   

11.
The electrosorption of benzoic acid on platinized electrode was studied by voltammetric and radiometric techniques. The free energy of adsorption, the heterogeneity factor of electrode surface and the surface concentration of adsorbate were determined. The adsorption of benzoic acid may be described by logarithmic isotherms. The kinetics of benzoic acid adsorption was also studied.  相似文献   

12.
The equilibrium uptake of cadmium (Cd2+), copper (Cu2+), and nickel (Ni2+) ions, both singly and in combination, by local Iraqi phosphate rocks (PR) was studied in a batch system. The phosphate rock was characterized using BET, FT-IR, XRD, and SEM techniques. Adsorption isotherms were developed for both the single and ternary-component systems and expressed by the mono- and multicomponent Langmuir, Freundlich, Redlich-Peterson, and Dubinin-Radushkevich adsorption models; model parameters were estimated by the nonlinear regression method using STATISTICA version 6 software. To understand the action of metals uptake, factors influencing the adsorption of the heavy metals including pH, initial metal ion concentration, weight of the adsorbent, mixing speed, contact time, and temperature were investigated. It was found that the mono- and multicomponent adsorption equilibrium data fitted very well to the Langmuir model with high determination coefficient (R 2). The maximum loading capacities (q max) were 70.852, 53.372, and 48.045 mg/g for Cd2+, Cu2+, and Ni2+ respectively. However, in the ternary system the loading capacity decreased because of competition between ions to binding sites of the adsorbent. Adsorption data were modeled using the pseudo-first- and pseudo-second-order kinetic and intraparticle diffusion models. It was seen that the pseudo- first-order kinetic equation could best describe the adsorption kinetics. Thermodynamic parameters showed that the adsorption of investigated heavy metals onto PR was endothermic and spontaneous in nature and the process is physiosorption. Fourier transform-infrared spectroscopy (FT-IR) analysis indicated that carboxylic (C?O), phosphine (p-H), and hydroxyl (–OH) groups in PR played an important role in the adsorption process. In conclusion, PR was found suitable as an abundant adsorbent for removal of the selected metal ions from aqueous solutions.  相似文献   

13.
The electrosorption isotherms of phenol on an activated carbon were measured over a concentration range of 0 to 100mg−11−1 at 25°C and pH=7.7, 6.5, 4.1 and 1.9. Cathodic polarizations relative to the open circuit potential decreased the amount of phenol adsorbed while anodic polarizations apparently increased the amount adsorbed; however, electro-oxidation of phenol masked adsorption at anodic polarizations. Electro-regeneration of spent activated carbon beds was studied. Within defined potential limits, the electro-regenerated bed maintains its virgin capacity. Application of a cathodic polarization to the bed enhanced the degree to which it was regenerated relative to that in a nonpolarized bed; the effect is, however, modest.  相似文献   

14.
Defluorination-enhanced hydrogen adsorptivity of activated carbon fibers   总被引:2,自引:0,他引:2  
Fluorinated activated carbon fibers (F-ACFs) were prepared by direct thermal fluorination of pristine activated carbon fibers. By the pyrolysis of F-ACFs at 1073 K under nitrogen gas flow, fluorine was subsequently eliminated and the sp2-bonded ACF structures were recovered. The micropore widths were 1.1 and 0.8 nm, and the isosteric heats of adsorption of nitrogen were 11.3 and 12.8 kJ/mol for pristine and defluorinated ACFs, respectively. These results strongly suggest that changes occurred in the structural properties of micropores in defluorinated ACFs. The hydrogen adsorption isotherms showed that the defluorinated ACFs adsorbed more hydrogen gas than pristine ACFs at 77 K, suggesting that the potential for interaction between hydrogen molecules and the defluorinated slit nanospaces was increased due to the changes in the pore structural properties and/or to the induced polarization of the pore walls making up the modified π-electron systems.  相似文献   

15.
Silica aerogel (SA) was loaded with nimesulide, a drug model compound, to demonstrate the potentiality of adsorption processes based on the usage of supercritical carbon dioxide to treat poorly water-soluble drugs, forming new kinds of drug delivery systems. Adsorption isotherms and kinetics were measured and described by models. The effect of pressure, temperature and solution concentration on loaded SA were also studied. Modelling of kinetic data showed that the sorption process was best described by a pseudo-second-order model. The adsorption isotherm data were best fitted by the Freundlich isotherm. The drug/SA composites were characterized using scanning electron microscopy, X-ray microanalysis, and FT-IR. Release kinetics of the adsorbed drug were also evaluated by in vitro dissolution tests. Results showed that nimesulide can be uniformly dispersed into the aerogel and that the release rate of nimesulide from the composite, constituted by drug and silica aerogel, is much faster than that of the crystalline drug.  相似文献   

16.
The biosorption of cyanide ions from aqueous solution by bagasse was studied in a batch adsorption system with pH, contact time, cyanide ion concentration, metal ion concentration, and adsorbent dosage as variables. XRD, FT-IR spectroscopy, CHN, proximate, ultimate, and TG/DTG thermal analyses were used for the characterization of bagasse. The biosorption capacities and rates of biosorption of cyanide ions onto bagasse were evaluated. The Langmuir and Freundlich adsorption models were applied to describe the isotherms and isotherm constants. Biosorption isothermal data were interpreted by the Langmuir model followed by the Freundlich model with maximum adsorption capacity of 98% of cyanide ion on bagasse. The kinetic experimental data were properly correlated with the first- and second-order kinetic model.  相似文献   

17.
利用扫描电子显微镜(SEM)、比表面分析仪和FTIR对活性炭纤维(ACFs)进行表征,并研究了ACFs对溶液中甲基橙的吸附性能。考察了吸附动力学、pH值、吸附温度及甲基橙溶液初始浓度对吸附性能的影响。实验结果表明,平衡吸附时间选取150 min,在溶液为中性条件下,溶液中甲基橙的去除率最高,溶液pH值为6时去除率达到最大值为93.45%;溶液温度为25℃时,ACFs的吸附效果最好;甲基橙的去除率随着甲基橙初始浓度增加而增大。等温吸附数据符合Freundlich吸附等温模型,吸附反应过程符合Langergren准一级动力学方程。  相似文献   

18.
The adsorption of aqueous cadmium ions (Cd(II)) have been investigated for modified activated carbon (AC-T) with oxygen-containing functional groups. The oxygen-containing groups of AC-T play an important role in Cd(II) ion adsorption onto AC-T. The modified activated carbon is characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The results of batch experiments indicate that the maximal adsorption could be achieved over the broad pH range of 4.5 to 6.5. Adsorption isotherms and kinetic study suggest that the sorption of Cd(II) onto AC-T produces monolayer coverage and that adsorption is controlled by chemical adsorption. And the adsorbent has a good reusability. According to the FT-IR and XPS analyses, electrostatic attraction and cation exchange between Cd(II) and oxygen-containing functional groups on AC-T are dominant mechanisms for Cd(II) adsorption.  相似文献   

19.
In this study, activated carbon fibers (ACFs) with high surface area and pore volume have been modified by Ni doping and fluorination. The surface modified ACFs were characterized by BET surface area, SEM/EDS, XRD, and Raman spectroscopy. The changes in pore structure and surface properties of these modified ACFs were correlated with hydrogen storage capabilities. After fluorination treatment, although the micropore volume of ACF was decreased, amounts of hydrogen storage were found to increase. Additionally, micropore volume on ACFs was found to be unchanged with Ni doping, hydrogen storage capacities were considerably increased due to the effect of catalytic activation of nickel. Though fluorination of ACFs increases hydrogen affinity, the effect of catalytic activation of nickel is more prominent, and thus led to better hydrogen storage. Hence, it was concluded that hydrogen storage capacity was related to micropore volumes, Pore size distribution (PSD) and surface properties of ACFs as well as specific surface areas.  相似文献   

20.
The potential of date palm pits to be a suitable precursor for preparation of porous carbon was explored in the present work, utilizing phosphoric acid as the activating agent. Experimental methods reported in the literature were chosen with certain modifications in order to simplify the process. Process optimization was performed using the popular response surface methodology (RSM) adopting a Box-Behnken design. Process optimization was intended to maximize the porous carbon yield and the methylene blue (MB) adsorption capacity, with the process variables being the activation temperature, impregnation ratio (IR), and activation time. The structural characteristics were assessed based on nitrogen adsorption isotherms, SEM, and FT-IR, while the adsorption capacity was estimated using MB adsorption. The optimized experimental conditions were identified to be an activation temperature of 400°C, IR of 3, and activation time of 58 min, with the resultant porous carbon having a yield of 44% and MB adsorption capacity of 345 mg/g. The structural characteristics of the porous carbon reveal the BET surface area to be 725 m2/g, with pore volume of 1.26 cc/g, an average pore diameter of 2.91 nm, and total micropore volume of 0.391 cc/g. The popular Langmuir and Freundlich adsorption isotherm models were tested, and a maximum monolayer adsorption capacity of MB was estimated to be 455 mg/g, which compares with the highest for MB reported in literature, evidencing the suitability of porous carbon for adsorption of macromolecular compounds. The low activation temperature and activation time with highest yield render the process technically and economically attractive for commercial use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号