首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anatase TiO2 nanocrystal colloids with high dispersion and photocatalytic activity were rapidly synthesized from peroxo-titanium-acid precursor by microwave-assisted hydrothermal method within 30?min at low temperature (120–180?°C). The transmission electron microscopy results indicate that the as-prepared TiO2 have a narrow particle size distribution (25–29?nm) and high dispersion. The crystal structure of all these products are pure anatase phase (XRD, Raman), and they show good crystallinity and large surface area (N2 adsorption–desorption measurements BET). The results of the UV–Visible absorbance and Fourier transform infrared spectra indicate that the surface peroxo group Ti(O2) still remains in TiO2 nanoparticles prepared by microwave-assisted hydrothermal method at 120?°C, and this surface peroxo group can be decomposed effectively by drying at 140?°C. The photocatalytic activity of the as-prepared TiO2 were evaluated by the degradation of reactive brilliant red X-3B, it is found that the as-prepared TiO2 exhibited good photocatalytic performance. Moreover, the existence of surface peroxo group greatly suppressed the photocatalytic activity of the TiO2 nanoparticles.  相似文献   

2.
AgInS2 nanoparticles with superior visible light photocatalytic activity were successfully synthesized by a microwave hydrothermal method. This method is a highly efficient and rapid route that involves no organic solvents, catalysts, or surfactants. The photocatalytic activity of AgInS2 nanoparticles was investigated through the degradation of dyes under visible light irradiation. Compared with TiO2−xNx, AgInS2 has exhibited a superior activity for photocatalytic degradation MO under the same condition. The experiment results showed that superoxide radicals (O2), hydrogen peroxides (H2O2) and holes (h+) were the mainly active species for the degradation of organic pollutants over AgInS2. Through the determination of flat band potential, the energy band structure of the sample was obtained. A possible mechanism for the degradation of organic pollutant over AgInS2 was proposed.  相似文献   

3.
Herein, we report the ultrasonic-assisted precipitation technique for the fabrication of Cu-doped TiO2 nanoparticles. The prepared sample showed high crystallinity, purity and nanoparticles like structure with the diameter in the range of 10–22 nm. The bandgap for Cu-doped TiO2 nanoparticles was estimated to be 2.91 eV using Tauc plot, which is considerable for improving the light-harvesting capacity. Further, the prepared Cu-doped TiO2 was used as photocatalyst for the eradication of ofloxacin (OFX), an antibiotic from an aqueous phase under visible illuminations. About 72% degradation of OFX (10 mg/L, pH 7) was achieved with Cu-doped TiO2 nanoparticles after 180 min of visible illumination. The probable photocatalytic mechanism for the decomposition of OFX has been proposed based on reactive species trapping study. Moreover, the antibiotic efficiency of OFX was investigated against Escherichia coli and it was observed that its antimicrobial activity was significantly diminished after the photocatalytic decomposition of the OFX solution with synthesized nanoparticles.  相似文献   

4.
Mesocrystalline TiO2/sepiolite (TiS) composites with the function of adsorption and degradation of liquid organic pollutants were successfully fabricated via a facile and low-cost solvothermal reaction. The prepared TiS composites were characterized by FESEM, HRTEM, XRD, XPS, N2 adsorption-desorption, UV–vis DRS, and EPR. Results revealed the homogeneous dispersion of highly reactive TiO2 mesocrystals on the sepiolite nanofibers. Thereinto each single–crystal–like TiO2 mesocrystal comprised many [001]-oriented anatase nanoparticles about 10–20 nm in diameter. The photocatalytic activity was further evaluated by the degradation of anionic dye (methyl orange) and cationic dye (methylene blue) under the UV-vis light (350≤λ≤780 nm) irradiation. By selecting appropriate experimental conditions, we can easily manipulate the photocatalytic performance of TiS composites. The optimal TiS catalyst (the sepiolite content of 28.5 wt.%, and the reaction time of 24 h) could efficiently degrade methyl orange to 90.7% after 70 min, or methylene blue to 97.8% after 50 min, under UV-vis light irradiation. These results can be attributed to their synergistic effect of high crystallinity, large specific surface area, abundant hydroxyl radicals, and effective photogenerated charge separation.  相似文献   

5.
In the present study, novel Co3O4/NiO nanosponges designed for the photocatalytic degradation of organic contaminants were synthesized by a simple precipitation technique. The formation of sponge-like nanostructures was clearly evident through the TEM analysis. The photocatalytic efficiency was tested against rhodamine B (RhB) and congo red (CR) dye solutions. Co3O4/NiO nanosponges showed excellent and enhanced photocatalytic efficacy compared to those of Co3O4, NiO nanoparticles, and standards like TiO2 and ZnO. The influence of paramount important operational parameters was explored and the conditions for the best photocatalytic efficiency were optimized. The trapping experiment revealed that the reactive oxygen species (ROS) identified was $OH radical. These findings certainly open up a new way for synthesizing a morphology dependent photocatalyst.  相似文献   

6.
Nanostructured TiO2 particles were synthesized by sol-gel method with room temperature ionic liquid (RTIL) 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) as a reaction medium. The structure and morphology of TiO2 nanoparticles were characterized with X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The as-prepared TiO2 nanoparticles present anatase crystal phase even without being calcined at high temperature, and show better photocatalytic performance in the degradation of methyl orange. The photocatalytic efficiency increases evidently along with increasing the concentration of nanostructure TiO2, and the degradation percent can reach 100% at the optimal catalyst concentration (2.0 g/L).  相似文献   

7.
Metal ion doped TiO2 nanoparticles supported on ZSM-5 zeolite (M-TiO2/ZSM-5 composites, M = Fe or Ni) were synthesized by hydrothermal method. The prepared composites were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis diffuse reflectance spectra (DRS). The photocatalytic activities of composites were evaluated by degradation of yellow GX aqueous solution under ambient condition. Fe-TiO2/ZSM-5 composite showed to be more efficient catalyst for degradation of dye molecules as compared with Ni-TiO2/ZSM-5 and TiO2/ZSM-5. Its higher photocatalytic activity is attributed to the effective separation of charge carriers that will be discussed in this paper in detail.  相似文献   

8.
In this paper, we report a kind of nano-TiO2/stellerite composite with enhanced photoactivity, which was synthesized by a typical homogeneous precipitation method followed by a calcination crystallization process using natural stellerite as support. The as-prepared composites were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption, high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The results showed that TiO2 loading amounts and calcination temperatures had significant influence on the adsorption and photocatalytic degradation properties of phenol. Moreover, it was indicated that the TiO2 nanoparticles (NPs) with smaller grain size (around 12.0?nm) and narrower size distributions were uniformly deposited on the surface of stellerite as a layer of film. Compared with commercial P25, the received composite exhibited more superior photocatalytic degradation performance towards phenol. The enhanced photocatalytic degradation performance should result from the better dispersibility of TiO2 NPs and higher separation efficiency of photogenerated electron-hole pairs. This work may set foundation for the practical application of this new composite photocatalyst in the field of wastewater treatment.  相似文献   

9.
Zhu  Xiaodong  Zhou  Qin  Xia  Yangwen  Wang  Juan  Chen  Hongjin  Xu  Qiao  Liu  Jiawei  Feng  Wei  Chen  Shanhua 《Journal of Materials Science: Materials in Electronics》2021,32(16):21511-21524

Pure TiO2 and Cu–doped TiO2 containing different amounts of copper ions with anatase/rutile/brookite triphasic structure were successfully synthesized through a simple hydrothermal method. The obtained samples were characterized by X–ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), X–ray photoelectron spectroscopy (XPS), UV?vis diffuse reflectance spectroscopy (UV-DRS), photoluminescence spectroscopy (PL) and Brunauer–Emmett–Teller surface area analyze (BET). Both pure and Cu–doped TiO2 show relatively high photocatalytic activity owing to their considerable surface areas. Moreover, the three–phase coexisting structure and the conversion between Cu2+ and Cu+ ions facilitate the separation of photogenerated electrons and holes, which is favorable for photocatalytic performance. 1%Cu–TiO2 exhibits the highest photocatalytic activity and the degradation degree of rhodamine B (RhB) reaches 93.5% after 30 min, which is higher than that of monophasic/biphasic 1%Cu–TiO2. ·O2? radical is the main active species, and h+ and ·OH species are subsidiary in the degradation process.

  相似文献   

10.
TiO2 nanorod arrays (TiO2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with 20 SILAR cycles CdS nanoparticles shows the best performance. This can be attributed to the enhanced separation of electrons and holes by forming heterojunctions of CdS nanoparticles and TiO2 NRAs. This provides a promising way to fabricate the material for solar energy conversion and wastewater degradation.  相似文献   

11.
TiO2/SnO2 stacked-layers are synthesized by reactive sputter deposition on the glass substrate. Very thin TiO2/SnO2 bilayer-photocatalysts exhibited a very high photocatalytic activity for a degradation of gaseous acetaldehyde. Both the control of an electronic structure of TiO2 overlayer in the near-surface region and the interfacial separation of photogenerated electrons/holes in the TiO2/SnO2 stacked-layer are keys to improve the photocatalytic performance.  相似文献   

12.
《Materials Research Bulletin》2013,48(11):4601-4605
Bi@Bi2O3@carboxylate-rich carbon core-shell nanosturctures (Bi@Bi2O3@CRCSs) have been synthesized via a one-step method. The core–shell nanosturctures of the as-prepared samples were confirmed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Raman spectroscopy. The formation of Bi@Bi2O3@CRCSs core–shell nanosturctures should attribute to the synergetic roles of different functional groups of sodium gluconate. Bi@Bi2O3@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation (λ > 420 nm) and shows an O2-dependent feature. According to trapping experiments of radicals and holes, hydroxyl radicals were not the main active oxidative species in the photocatalytic degradation of MB, but O2 are the main active oxidative species.  相似文献   

13.
Hollow TiO2 (HT) sphere aggregates were prepared using carbon spheres as templates. The photocatalytic activity of HT was determined by degradation of two nitrogen-containing dyes, methylene blue (MB) and methyl orange (MO). The adsorption isotherms and the photocatalytic degradation kinetics of the two dyes were studied and compared using different concentrations of dyes for the pure, isopropanol-added, and KI-added systems. Isopropanol was used as a OH? radical scavenger, while KI was added as a valance band hole scavenger. The results showed that the reaction mechanism of the photocatalytic process of MB was first governed by OH? radicals, and then by valence band holes, whereas holes played a major role in the whole photodegradation process of MO. The photocatalytic adsorption constant K V has a positive correlation with the reaction constant k ov in all systems. The photodegradation efficiencies of the dyes were discussed considering the surface characteristics of HT and the structure of the dyes with different catalyst loads (0.25–2 g L?1) and under different pH (3–10) conditions. Compared with solid TiO2, HT exhibited enhanced performance in photocatalytic degradation of both MB and MO.  相似文献   

14.
Square-like B doped TiO2 nanocrystals were first synthesized by a mild solvothermal method with H3BO4 and titanium isopropoxide as the precursors, and isopropyl alcohol as reaction medium. Then, Ag nanoparticles were deposited on TiO2-B nanosquares by photo-deposition. The as-synthesized products have been investigated by photocatalytic reaction test and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectra (DRS). The results showed that boron was successfully doped into TiO2 nanosquares under solvothermal condition. The obtained Ag/TiO2-B composite showed high efficiency in degradation of acid orange II under visible light irradiation. The high photocatalytic performance could be attributed to the synergistic effect of B doping and the plasmon photocatalysis role of the deposited silver nanoparticles over TiO2.  相似文献   

15.
Surfactant controlled synthesis of La/SnO2–TiO2 nanocomposite was studied by using anionic surfactant dioctyl sulfosuccinate sodium salt (DOSS) synthesized via sol–gel method followed by hydrothermal method by using different lanthanum precursors. The structural investigation, thermal degradation, kinetics, thermodynamics properties, crystallite size, morphology, surface and photocatalytic properties of synthesized samples were studied by using different characterization techniques i.e. Thermogravimetric analysis (TGA), Fourier transform-infrared spectroscopy (FTIR), Particle Size Analyzer (PSA), Powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Ultraviolet–Visible spectrophotometer (UV–VIS). Band gap calculations and optical properties of both SnO2–TiO2 and La/SnO2–TiO2 were studied by using UV–Visible spectroscopy. The performance of both SnO2–TiO2 and La/SnO2–TiO2 nanocomposites as a photocatalytic agent was also investigated for the degradation of methylene blue (MB) under the illumination of sunlight.  相似文献   

16.
Nanocrystalline TiO2 was synthesized by controlled hydrolysis of titanium tetraisopropoxide. The anatase phase was converted to rutile phase by thermal treatment at 1023 K for 11 h. The catalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier-transform infrared absorption spectrophotometry (FT-IR) and N2 adsorption (BET) at 77 K. This study compare the photocatalytic activity of the anatase and rutile phases of nanocrystalline TiO2 for the degradation of acetophenone, nitrobenzene, methylene blue and malachite green present in aqueous solutions. The initial rate of degradation was calculated to compare the photocatalytic activity of anatase and rutile nanocrystalline TiO2 for the degradation of different substances under ultraviolet light irradiation. The higher photocatalytic activity was obtained in anatase phase TiO2 for the degradation of all substances as compared with rutile phase. It is concluded that the higher photocatalytic activity in anatase TiO2 is due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst.  相似文献   

17.
TiO2-based heterogeneous photocatalysis has been widely considered as a promising technique for decontamination of water. Herein the hybrid of TiO2 nanocrystals decorated Fe2O3 nanoparticles was successfully synthesized via a mild hydrothermal method, derived from favorable titanium glycolate and water-soluble FeII salt precursors. The composition and structure of the as-synthesized TiO2-Fe2O3 hybrids were characterized by Powder X-ray diffraction (XRD), EDX mapping, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The photocatalytic activity was evaluated by the decomposition of Rhodamine B in an aqueous solution under visible-light (λ > 420 nm). The results show that the TiO2-Fe2O3 nanocomposite exhibits superior photocatalytic capability to the bare ones upon Rhodamine B degradation, owing to promoted photo-induced electrons and holes separation and migration on the basis of photoluminescence spectra, photocurrent measurements, and electrochemical impedance (EIS) spectroscopy.  相似文献   

18.
CeO2/TiO2 nanobelt heterostructures are synthesized via a cost‐effective hydrothermal method. The as‐prepared nanocomposites consist of CeO2 nanoparticles assembled on the rough surface of TiO2 nanobelts. In comparison with P25 TiO2 colloids, surface‐coarsened TiO2 nanobelts, and CeO2 nanoparticles, the CeO2/TiO2 nanobelt heterostructures exhibit a markedly enhanced photocatalytic activity in the degradation of organic pollutants such as methyl orange (MO) under either UV or visible light irradiation. The enhanced photocatalytic performance is attributed to a novel capture–photodegradation–release mechanism. During the photocatalytic process, MO molecules are captured by CeO2 nanoparticles, degraded by photogenerated free radicals, and then released to the solution. With its high degradation efficiency, broad active light wavelength, and good stability, the CeO2/TiO2 nanobelt heterostructures represent a new effective photocatalyst that is low‐cost, recyclable, and will have wide application in photodegradation of various organic pollutants. The new capture–photodegradation–release mechanism for improved photocatalysis properties is of importance in the rational design and synthesis of new photocatalysts.  相似文献   

19.
The presence of NaF in the aqueous suspension of TiO2 can accelerate the photocatalytic degradation of organic pollutants. However, disposal of such a fluoride-containing wastewater is not allowed by environmental regulation. In the present work, we report on surface modification of TiO2 with a hardly water soluble salt, fluorite and fluorapatite. The modified catalysts at low loading displayed a higher activity than bare TiO2 for the sorption and photocatalytic degradation of phenol and 2,4-dichlorophenol in water. A kinetic study using butanol as hydroxyl radical scavenger revealed that the fluoride-modified catalysts produced more hydroxyl radicals than bare TiO2. Five repeated experiments showed that the fluorapatite-modified TiO2 was very stable, and could be re-used without significant loss in activity.  相似文献   

20.
Integrated water resources management practice is gaining popularity as an alternative water source due to the limited supply of freshwater. The present study was carried out on the photocatalytic degradation of Direct red 28 (DR-28) dye using magnetic nanoparticles (MNPs; Fe3O4) as a photocatalyst. The study was conducted on the photocatalytic degradation of DR-28 dye in synthetic dye effluent water, to understand the effects of different photoreaction parameters on the degradation kinetics. The influence of different parameters such as time, amount of photocatalyst, concentration of H2O2 and pH was investigated. At the optimum dosage of MNPs (0.6?g/L) with 4?mmol/L of H2O2, significant photocatalytic degradation of DR-28 dye (93.2%) was observed. The kinetic study revealed that the photocatalytic degradation followed pseudo-first-order kinetics. The degradation performance of Fe3O4 nanoparticles as a photocatalyst for DR-28 dye was compared with titanium dioxide (TiO2) and it was found that the performance of Fe3O4 as a photocatalyst is superior to TiO2 photocatalyst. The real dye effluent was also degraded at optimum conditions and promising results were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号