首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imprinted nanoparticles as drug delivery carriers have been considered because owing to their cross-linked network, they act as the drug reservoir for controlled release. In this study, selective MIPs nanoparticles of paclitaxel (PTX) were successfully developed for application in the biological molecular recognition and in the design of new anticancer drug delivery systems. The MIPs nanoparticles prepared by miniemulsion polymerization technique using methacrylic acid (MAA) and methyl methacrylate as non-covalent functional monomer, ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate (TRIM) as cross-linker agent, azobisisobutyronitrile as initiator, and hexadecane as hydrophobic agent. In order to prepare of MIP nanoparticles, the synthesis conditions and effective parameters, such as: cross-linker agent, different molar ratios of template–functional monomer–cross-linker agent, were investigated. In addition, the effect of different molar ratios of template and monomers on polymers binding and morphology were characterized. Structure and thermal properties of MIPs were confirmed by FT-IR spectroscopy and thermogravimetric analysis. Imprinted nanoparticles showed significant drug loading and encapsulation efficiency, 17.8 and 100 %, respectively. The particle size of MIP nanoparticles varies between 187 and 726 nm, according the SEM images and laser light scattering data. The imprinted nanoparticles showed satisfactory affinity (84 %) to PTX with a binding of 12 times higher than non-imprinted nanoparticles in biological samples when MAA and TRIM were used as functional and cross-linker monomer, respectively. Results from release experiments of MIPs showed a very slow and controlled release of PTX which would be helpful for sustained drug delivery.  相似文献   

2.
Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.  相似文献   

3.
The design, synthesis and characterization of biologically synthesized nanomaterials have become an area of significant interest. In this paper, we report the extracellular synthesis of gold and silver nanoparticles using Emblica Officinalis (amla, Indian Gooseberry) fruit extract as the reducing agent to synthesize Ag and Au nanoparticles, their subsequent phase transfer to an organic solution and the transmetallation reaction of hydrophobized silver nanoparticles with hydrophobized chloroaurate ions. On treating aqueous silver sulfate and chloroauric acid solutions with Emblica Officinalis fruit extract, rapid reduction of the silver and chloroaurate ions is observed leading to the formation of highly stable silver and gold nanoparticles in solution. Transmission Electron Microscopy analysis of the silver and gold nanoparticles indicated that they ranged in size from 10 to 20 nm and 15 to 25 nm respectively. Ag and Au nanoparticles thus synthesized were then phase transferred into an organic solution using a cationic surfactant octadecylamine. Transmetallation reaction between hydrophobized silver nanoparticles and hydrophobized chloroaurate ions in chloroform resulted in the formation of gold nanoparticles.  相似文献   

4.
《Nanostructured Materials》1998,10(4):673-678
Polyacrylamide-silver nanocomposites with silver nanoparticles well dispersed in polyacrylamide matrix were synthesized for the first time by γ-irradiation at ambient conditions in alcohol solvent. X-ray powder diffraction (XRD) showed that the samples consisted of two phases, metallic silver and polyacrylamide. The amount of silver present as metallic species in polyacrylamide matrix was measured by precipitation titration. Transmission electron microscopy (TEM) was used to study the morphology and size distribution of silver nanoparticles. Infrared (IR) spectrum confirmed the polymerization of acrylamide monomer and the formation of polyacrylamide in ethanol upon γ-irradiation.  相似文献   

5.
熊万斌  刘燕  倪忠斌  陈明清 《功能材料》2012,43(11):1462-1464
以聚乙烯吡咯烷酮(PVP)为分散剂,2,2-二甲氧基-2-苯基苯乙酮(BDK)为引发剂,在乙醇和水(V(乙醇)/V(水)=7/3)的混合介质中,由紫外(UV)光引发苯乙烯(St)和甲基丙烯酸甲酯(MMA)进行分散共聚,研究了影响P(St-co-MMA)收率及其微球粒径的因素;在微球分散液中加入一定浓度的AgNO3,经UV原位催化Ag+还原,制备出了负载有Ag纳米颗粒的P(St-co-MMA)复合微球。用透射电子显微镜(TEM)、激光光散射(LLS)和X射线衍射(XRD)对微球的粒径及Ag纳米颗粒的负载情况进行了表征,发现P(St-co-MMA)微球的粒径均一,可控制在500~800nm之间,Ag纳米颗粒较均匀地负载于微球的表面,平均大小为20nm。  相似文献   

6.
The Taguchi method of experimental design is very well suited to improving the production process of synthetic nanoparticles. The current application of the Taguchi method was successful in optimizing the experimental parameters affect on synthesis procedure of silver chromate nanoparticles. Ultrafine silver chromate particles were synthesied by precipitation method using addition of silver ion solution to the chromate reagent. The effect of reaction conditions such as: silver and chromate concentrations, flow rate of reagent addition and temperature on the particle size of synthesized silver chromate particles were investigated. The effect of these factors on the diameter of silver chromate particles were quantitavely evaluated by the analysis of variance (ANOVA). The results showed that silver chromate particles can be synthesized by controlling silver concentration, flow rate and temperature. Finally, the optimum conditions for synthesis of silver chromate particles by this simple and fast method were proposed. The results of ANOVA showed that 0.001 mol/l silver ion concentration, 40 ml/min flow rate for addition of silver reagent to the chromate solution and 0°C temperature are optimum conditions for producing silver chromate particles with 100 ± 33 nm width. On the other hand, the Ag2CrO4 nano-superstructures were synthesized by electrosynthesis method. The results showed that Ag2CrO4 nanoparticles synthesized by this method have 75 nm average diameter.  相似文献   

7.
ABSTRACT

Silver nanoparticles synthesised using aqueous extract of Cocos nucifera (CN) mesocarp were evaluated for their photocatalytic activity under solar irradiation. The silver nanoparticles were synthesised by a green method of harnessing bioactive phytocomponents from the mesocarp of Cocos nucifera. Large-scale application of this process necessitates the manoeuvering of the process parameters for increasing the conversion of silver ions to nanoparticles. Process parameters influencing the morphological characteristics of silver nanoparticles such as precursor salt concentration and pH of the synthesis mixture were studied. The crystalline nanoparticles were characterised using UV-vis spectroscopy, XRD, FTIR, SEM and EDX analysis. CN extract and 5 mM silver nitrate solution at a ratio of 1:4 (v/v) in the synthesis mixture was found to be the optimum. Alkaline initial pH of the synthesis mixture was found to favour the synthesis of smaller sized monodispersed silver nanoparticles. Solar energy was harnessed for the photocatalytic degradation of Malachite green dye using silver nanoparticles obtained through the green synthesis method. Overall process aims at utilisation of naturally available resource for the synthesis of silver nanoparticles as well as the degradation of dyes using these nanoparticles, making it useful in the treatment of wastewater.  相似文献   

8.
Silver nanoparticles have been synthesized by reduction of silver nitrate in the presence of humic acids (HA) which acted as capping agents. The HA protected nanoparticles were found to be sensitive to increasing concentrations of sulfurazon-ethyl herbicide in solution which induced a variation in color of the nanoparticles solution from yellow to purple. The effect of the humic acid concentration used in the nanoparticles synthesis was studied by varying the [Ag+:HA] ratio content from [1:1] to [1:100]. UV–Vis spectroscopy was used to monitor the extinction spectra of silver nanoparticles after the synthesis and in the herbicide sensing experiments. An average silver nanoparticles size of 5 nm was confirmed by transmission electron microscope (TEM). When exposed to increasing concentration of sulfurazon-ethyl (0, 100, 200, 300, 400, 500 ppm), the solution of nanoparticles was found to changes from yellow color to orange red and purple with increasing herbicide concentration.  相似文献   

9.
In this report, the silver oxide nanoparticles were green synthesized using Panicum miliaceum grains extract and were proposed for the first time. GC–MS analysis explicated 2-Acetylbenzoic acid was the active phytocompound with 97.07% of presence in aqueous grains extract. The synthesized silver oxide nanoparticles were analyzed by several analytical techniques such as UV–visible, XRD, FT-IR, HR-TEM, TG, XPS, EDX and mapping analyses. The results of various analytical techniques confirmed the silver oxide nanoparticles formation. The formed nanoparticles were in 10–25 nm size. The effectual bioactive properties of nanoparticles were revealed through antioxidant, anti-diabetic, anti-inflammatory, larvicidal and insecticidal activities. The high mortality of larvae and insect was observed at 48 h in 100 ppm and 72 h in 100 μg/Kg concentration, respectively. The antibacterial activity explained the bactericidal property of nanoparticles on S. aureus and S. typhi at 150 μg/mL concentration. The effective drug activity of nanoparticles was observed from 98.10 % of toxicity against A549 lung cancer cells at 100 μg/mL concentration. The growth of Vigna unguiculata was efficiently increased by lower concentration (60 ppm) of nanoparticles. According to results, the green synthesized nanoparticles can be applied in pharmaceutical and agricultural sectors as biocompatible, non-toxic and cost-effective material.  相似文献   

10.
A novel preparation method for a high-performance electrically conductive adhesive (ECA) which consisted of silver nanorods, silver nanoparticles and modified epoxy resin was developed. Silver nanorods (100 nm in diameter and 5 μm in length) were synthesized by reduction of silver nitrate with ethylene glycol in the presence of Pd seeds and poly (vinyl pyrrolidone) (PVP). Silver nanoparticles (50~60 nm) were synthesized using N, N′-Dimethylformanide as the reducing agent and PVP as the stabilizer. The nanorods and nanoparticles were dispersed well and no agglomerate in the matrix. The volume electrical resistivity tests showed the volume electrical resistivity of the ECA was closely related with the various sintering temperatures and time, and the ECA could achieve the volume electrical resistivity of (3–4) × 10−5 Ω cm after sintering at 160 °C for 20 min. Moreover, the results showed the as-prepared ECA was able to achieve low-temperature sintering and possessed excellent electrical, thermal, and mechanical properties.  相似文献   

11.
The present study reports an environmentally friendly and rapid method for synthesis of silver nanoparticles. Although several articles have been reported for the synthesis of silver nanoparticles from plant extract, here we have developed a green synthetic method for silver nanoparticles using Ficus benghalensis leaf extract which acts as a reducing and capping agent. It was observed that use of Ficus benghalensis leaf extract makes a fast and convenient method for the synthesis of silver nanoparticles and can reduce silver ions into silver nanoparticles within 5 min of reaction time without using any harsh conditions. Silver nanoparticles so prepared were characterized by using UV-visible spectroscopy, transmission electron microscope-energy dispersive spectra (TEM-EDS) and X-ray diffraction (XRD). Further, these nanoparticles show effective antibacterial activity toward E.coli MTCC1302 due to high surface to volume ratio.  相似文献   

12.
This paper describes green procedure for the synthesis of silver nanoparticles (AgNPs) using the extract of Calotropis procera flower. The aqueous extract of this flower has been used as green reducing and stabilizing agent. Parameters such as pH and reaction time were varied. Progress of the reaction has been monitored by surface plasmon resonance of AgNPs, which occur at 405 nm. Raman spectra revealed the unique surface enhancing property of synthesized AgNPs. XRD pattern of AgNPs confirms the crystallinity with fcc plane. The average particle size of synthesized AgNPs was found to be in the order of 35 nm. SEM analysis revealed well defined shape of AgNPs. SEM with EDX spectrum authenticated the presence of silver. FT-IR spectra indicate that synthesized AgNPs were capped with phytochemicals present in the extract. The cubical shape of AgNPs was obtained. This greener synthesis is achieved at room temperature and found to be reproducible.  相似文献   

13.
The utility of polymeric nanoparticles as drug delivery systems depends on effective control of synthetic parameters with a significant impact on their physico-chemical characteristics. In this study, a chemometric central composite experimental design (CCD) was used to optimize the synthesis of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles by emulsification solvent evaporation using anionic molecular micelles, such as poly(sodium N-undecylenic sulfate) (poly-SUS), poly(sodium N-undecanoyl-glycinate) (poly-SUG) and poly(sodium N-undecanoyl-L-leucyl-valinate) (poly-L-SULV) as well as conventional emulsifiers, such as anionic sodium dodecyl sulfate (SDS) and non-ionic poly(vinyl alcohol) (PVA). The individual and combined effects of PLGA concentration, emulsifier concentration, homogenization speed, and sonication time (design variables) on particle size and polydispersity index (responses) were investigated using multivariate analysis. The most significant design variables influencing the nanoparticle size and size distribution were PLGA concentration and emulsifier concentration (p < 0.05) in comparison to the other design variables. The quadratic model demonstrated the highest predictive ability when the molecular micelles were used as emulsifiers. The PLGA nanoparticles optimally synthesized according to the CCD were further purified by dialysis and then freeze-dried. Dried nanoparticles synthesized with molecular micelles and PVA were readily re-suspended in water, as compared with SDS for which nanoparticle aggregation occurred. The size of PLGA nanoparticles synthesized using molecular micelles increased after freeze-drying, but remained smaller than 100 nm when poly-L-SULV was used as emulsifier. The PDI values indicated monodisperse nanoparticle suspensions after purification and freeze-drying for all investigated molecular micelles (PDI < 0.100). The nanoparticle suspensions synthesized using molecular micelles were the most stable after dialysis and freeze-drying, having low negative zeta potential values ranging from -54 +/- 1.6 mV for poly-L-SULV to -63.2 +/- 0.4 mV for poly-SUS. Transmission electron microscopy (TEM) micrographs showed spherical shape and smooth surface for the PLGA nanoparticles synthesized using molecular micelles.  相似文献   

14.
以盐酸黄连素(berberine-C1)为模板分子,硅胶为牺牲载体,甲基丙烯酸(MAA)或4-乙烯基吡啶(4-VP)、二甲基丙烯酸乙二醇酯(EDMA)及偶氮二异丁腈(AIBN)分别为功能单体、交联剂及引发剂制备了黄连素印迹聚合物。用光学显微镜观察了聚合物形貌,红外光谱(IR)研究了印迹聚合物(Mip)对模板分子的再结合...  相似文献   

15.
Synthesis of nanoparticles by using natural products as reducing and stabilizing agents have been widely used in various fields especially medicine, primarily because of its lower cost, simplicity, and less toxic byproducts. In the present work, silver nanoparticles (Ag NPs) were rapidly synthesized from silver nitrate in a green one-step synthesis by the aqueous extracts of Osage orange (Maclura pomifera) leaf as a reducing and stabilizing agent simultaneously. The effects of pH, extract quantity, and silver salt concentration were investigated to determine the optimum conditions of green synthesis of Ag NPs. The synthesized Ag NPs were characterized by different techniques including UV–Visible (UV–Vis) absorption spectroscopy, X-ray diffraction (XRD), Fourier transform Infrared (FT-IR) Spectroscopy, and Transmission Electron Microscopy (TEM). The Ag NPs showed surface plasmon resonance centered at 415?nm. The XRD pattern and TEM analysis revealed spherical, stable, and uniform Ag NPs with the average particle size of about 12?nm. The FT-IR spectroscopy showed that mainly hydroxyl functional groups, as both the reducing and stabilizing agent are responsible for silver nanoparticles synthesis. The antimicrobial activity of the synthesized Ag NPs showed a significant microbicidal effect on all clinical isolates especially, Gram-negative bacteria and fungi. These results suggest that such stable and uniform Ag NPs can be synthesized rapidly and simply for clinical as well as pharmaceutical applications.  相似文献   

16.
The Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. The work presented here with the biosynthesis of silver nanoparticles using Moringa oleifera leaf extract as reducing and stabilizing agent and its application in nonlinear optics. The aqueous silver ions when exposed to Moringa oleifera leaf extract are reduced resulting in silver nanoparticles demonstrating the biosynthesis. The silver nanoparticles were characterized by UV-Visible, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and transmission electron microscopy (TEM) techniques. TEM analysis shows a dispersion of the nanoparticles in a range of 5-80 nm with the average around 46 nm and are crystallized in face centred cubic symmetry. To show that these biosynthesized silver nanoparticles possess very good nonlinear properties similar to those nanoparticles synthesized by chemical route, we carried out the Z-scan studies with a 6 ns, 532 nm pulsed laser. We estimated the nonlinear absorption coefficient and compare it with the literature values of the nanoparticles synthesized through chemical route. The silver nanoparticles suspended in solution exhibited reverse saturable absorption with optical limiting threshold of 100 mJ/cm2.  相似文献   

17.
Thermoresponsive poly(N-isopropyl acrylamide) (pNIPAm) microgels possessing a hollow structure have been synthesized from core-shell nanoparticles upon oxidation of the particle core, followed by removal of the produced polymer segments by centrifugation. N,N'-(1,2-dihydroxyethylene)bisacrylamide (DHEA) is used as a cross-linker for preparing the degradable core, whereas N,N'-methylenebis(acrylamide) (BIS) is used as a cross-linker to add a nondegradable pNIPAm shell. Addition of NaIO(4) to a suspension of these particles in water leads to controlled degradation of the particle core by cleavage of the 1,2-glycol bond in DHEA. Fluorescence spectroscopy, UV/Vis spectroscopy, and photon correlation spectroscopy are used to characterize the hollow particles produced.  相似文献   

18.
Low-cost polyalkenoate cements analogous to dental cements, i.e., cements based on polymers of acrylic acid crosslinked via bridging metal cations, were developed with a goal of producing a more flexible alternative to Portland cement. Economic constraints necessitated the replacement of the acid-degradable glass normally used in dental cements; the purpose of the glass is to provide both a source of polyvalent cations for crosslinking and solid filler for a composite material. The dual functionality of the powdered glass was accomplished via the use of manganese tetraoxide as the filler and aluminum chloride as the cation source for the ionic crosslinks. Unlike dental cements that have a gel-like consistency before setting, low viscosity cements were produced by using acrylic acid monomer rather than low-molecular weight poly(acrylic acid). Mechanical and rheological properties were used to monitor cement characteristics. Because of the large number of formulation variables, a design of experiments (DOE) approach was used. DOE helped narrow the search for formulations that would result in hardened cements and find the optimal set of ingredients that led to cements with the best properties given the economic constraints on the ingredients. Rheology was adjusted to match that of Portland cement by altering the filler volume fraction, which was very effective since the rheology depended strongly on that variable. The most pertinent independent variables for the mechanical properties were the curing time and monomer/cation ratio in the ranges tested; however, the monomer/water ratio was fixed at the minimum level possible and not increased because of economic considerations. The best materials produced in terms of mechanical properties resulted when acrylic acid monomer was partially replaced by N,N′-methylenebisacrylamide; this substitution resulted in a stronger and tougher cement. An erratum to this article can be found at  相似文献   

19.
In the present study, a simple mathematical model has been developed for synthesis of silver nanoparticles. The silver nanoparticles have been synthesized in ternary reverse microemulsion of cyclohexane/water/sodium dodecyl sulfate (SDS). The silver nanoparticles were produced by reaction between silver nitrate in the water droplet core of one microemulsion and hydrazine as reducing agent in the water droplet core of another microemulsion. The dynamic behavior of process was modeled on mass balance equations which were solved using the finite difference method. The kinetic parameters of the critical number size (N crit ), rate order of nucleation, and growth constants were estimated by minimizing the difference between the average particle size predicted by model and those obtained by experiments. The UV-Vis absorption spectra, transmission electron microscopy (TEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and dynamic light scattering (DLS) were used to analyze the structure and particle size distribution of silver nanoparticles.  相似文献   

20.
为改善传统化学交联水凝胶的低力学性能、透明度、溶胀度和生物相容性, 以无机纳米粒子硅酸镁锂(LMSH)作为物理交联剂, 半乳糖氨基化的丙烯酸衍生物(GAC)作为生物相容性单体, N-异丙基丙烯酰胺(NIPAM)为功能单体, 采用原位自由基聚合制备得到兼具温度敏感性和生物相容性的纳米复合水凝胶poly(NIPAM-LMSH-GAC)。结果表明: LMSH在水凝胶基体中被完全剥离, 并起到交联作用; 相比于传统化学交联剂制备的此类水凝胶, 所得物理交联的纳米复合水凝胶具有更高的溶胀度、良好的温敏性、优异的脉冲响应性, 但鼠成纤细胞(L929)在纳米复合水凝胶表面的细胞数量略低; 物理交联剂LMSH的使用和一定量的GAC的使用并没有明显改变水凝胶的体积相转变温度(VPTT), 仍保持在33℃左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号