首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in-vitro pharmacological properties of (2,3-dioxo-7-(1H-imidazol-1-yl)-6-nitro-1,2,3,4-tetrahydro-1-quinoxal inyl)-acetic acid monohydrate, YM872, a novel and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor antagonist were investigated. YM872 is highly water soluble (83 mg mL(-1) in Britton-Robinson buffer) compared with 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX), 6-(1H-imidazol-1-yl)-7-nitro-2,3(1H,4H)-quinoxalinedione hydrochloride (YM90K) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). YM872 potently inhibits [3H]AMPA binding with a Ki (apparent equilibrium dissociation constant) value of 0.096 +/- 0.0024 microM. However, YM872 had very low affinity for other ionotropic glutamate receptors, as measured by competition with [3H]kainate (high-affinity kainate binding site, concentration resulting in half the maximum inhibition (IC50) = 4.6 +/- 0.14 microM), [3H]glutamate (N-methyl-D-aspartate (NMDA) receptor glutamate binding site, IC50 > 100 microM) and [3H]glycine (NMDA receptor glycine-binding site, IC50 > 100 microM). YM872 competitively antagonized kainate-induced currents in Xenopus laevis oocytes which express rat AMPA receptors, with a pA2 value of 6.97 +/- 0.01. In rat hippocampal primary cultures, YM872 blocked a 20-microM AMPA-induced increase of intracellular Ca2+ concentration with an IC50 value of 0.82 +/- 0.031 microM, and blocked 300-microM kainate-induced neurotoxicity with an IC50 value of 1.02 microM. These results show that YM872 is a potent and highly water-soluble AMPA antagonist with great potential for treatment of neurodegenerative disorders such as stroke.  相似文献   

2.
Antagonists of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptors may have therapeutic potential as psychotropic agents. A series of mononitro- and dinitro-2- and 3-hydroxyphenylalanines was prepared, and their activity compared with willardiine, 5-nitrowillardiine, AMPA, and 2,4,5-trihydroxyphenylalanine (6-hydroxydopa) as inhibitors of specific [3H]AMPA and [3H]kainate binding in rat brain homogenates. The most active compounds were highly acidic (pKa 3-4), namely, 2-hydroxy-3,5-dinitro-DL-phenylalanine (13; [3H]AMPA IC50 approximately equal to 25 microM) and 3-hydroxy-2,4-dinitro-DL-phenylalanine (19; [3H]AMPA IC50 approximately equal to 5 microM). Two other dinitro-3-hydroxyphenylalanines, and 3,5-dinitro-DL-tyrosine, were considerably less active. Various mononitrohydroxyphenylalanines, which are less acidic, were also less active or inactive, and 2- and 3-hydroxyphenylalanine (o- and m-tyrosine) were inactive. Compounds 13 and 19, DL-willardiine (pKa 9.3, [3H]AMPA IC50 = 2 microM), and 5-nitro-DL-willardiine (pKa 6.4, [3H]AMPA IC50 = 0.2 microM) displayed AMPA > kainate selectivity in binding studies. Compound 19 was an AMPA-like agonist, but 13 was an antagonist in an AMPA-evoked norepinephrine release assay in rat hippocampal nerve endings. Also, compound 13 injected into the rat ventral pallidum antagonized the locomotor activity elicited by systemic amphetamine.  相似文献   

3.
A series of 1,2,3,4-tetrahydroquinoline-2,3,4-trione 3-oximes (QTOs) was synthesized and evaluated for antagonism of NMDA receptor glycine site. Glycine site affinity was determined using a [3H]DCKA binding assay in rat brain membranes and electrophysiologically in Xenopus oocytes expressing 1a/2C subunits of cloned rat NMDA receptors. Selected compounds were also assayed for antagonism of AMPA receptors in Xenopus oocytes expressing rat brain poly-(A)+RNA. QTOs were prepared by nitrosation of 2,4-quinolinediols. Structure-activity studies indicated that substitutions in the 5-, 6-, and 7-positions increase potency, whereas substitution in the 8-position causes a decrease in potency. Among the derivatives evaluated, 5,6,7-trichloro-QTO was the most potent antagonist with an IC50 of 7 nM in the [3H]DCKA binding assay and a Kb of 1-2 nM for NMDA receptors expressed in Xenopus oocytes. 5,6,7-Trichloro-QTO also had a Kb of 180 nM for AMPA receptors in electrophysiological assays. The SAR of QTOs was compared with the SAR of 1,4-dihydroquinoxaline-2,3-diones (QXs). For compounds with the same benzene ring substitution pattern, QTOs were generally 5-10 times more potent than the corresponding QXs. QTOs represent a new class of inhibitors of the NMDA receptor which, when appropriately substituted, are among the most potent glycine site antagonists known.  相似文献   

4.
A series of aromatic and azepine ring-modified analogs of 3-hydroxy-1H-1-benzazepine-2,5-dione (HBAD) were synthesized and evaluated as antagonists at NMDA receptor glycine sites. Aromatic ring-modified HBADs were generally prepared via a Schmidt reaction with substituted 2-methoxynaphthalene-1,4-diones followed by demethylation. Electrophilic aromatic substitution of benzazepine 3-methyl ethers gave 7-substituted analogs. The preparation of multiply substituted 2-methoxynaphthalene-1,4-diones was effected via Diels-Alder methodology utilizing substituted butadienes with 2-methoxybenzoquinones followed by aromatization. Structural modifications, such as elimination of the aromatic ring, removal of the 3-hydroxyl group, and transfer of the hydroxyl group from C-3 to C-4, were also studied. An initial evaluation of NMDA antagonism was performed using a [3H]MK801 binding assay. HBADs demonstrating NMDA antagonist activity as indicated by inhibition of [3H]MK801 binding were further evaluated employing a [3H]-5,7-dichlorokynurenic acid (DCKA) glycine site binding assay. Selected HBADs were characterized for functional antagonism of NMDA and AMPA receptors using electrophysiological assays in Xenopus oocytes and cultured rat cortical neurons. Antagonist potency of HBADs showed good correlation between the different assay systems. HBADs substituted at the 8-position possessed the highest potency with the 8-methyl (5), 8-chloro (6), and 8-bromo (7) analogs being the most active. For HBAD 6, the IC50 in [3H]-DCKA binding assays was 0.013 microM and the Kb values for antagonism of NMDA receptors in oocytes (NR1a/2C) and cortical neurons were 0.026 and 0.048 microM, respectively. HBADs also antagonized AMPA-preferring non-NMDA receptors expressed in oocytes but at a lower potency than corresponding inhibition of NMDA receptors. HBADs demonstrating a high potency for NMDA glycine sites showed the highest steady-state selectivity index relative to AMPA receptors. Substitution at the 6-, 7-, and 9-positions generally reduced or eliminated glycine site affinity. Moving the hydroxyl group from C-3 to C-4 reduced receptor affinity, and potency was eliminated by the removal of the aromatic ring or the hydroxyl group. These data indicate that the HBAD series has specific structural requirements for high receptor affinity. With the exception of substitution at C-8, modified HBADs generally have a lower affinity at NMDA receptor glycine sites than the parent compound 3. Mouse maximum electroshock-induced seizure studies show that the three HBADs selected for testing have in vivo potency with the 6,8-dimethyl analog (52) being the most potent (ED50 = 3.9 mg/kg, iv).  相似文献   

5.
Aromatic analogs of arcaine were shown to have inhibitory effects on the binding of the channel blocking drug [3H]MK-801 to the NMDA receptor complex. The most potent compound of the series was an N,N'-bis(propyl)guanidinium which inhibited [3H]MK-801 binding with an IC50 of 0.58 microM and an IC50 of 12.17 microM upon addition of 100 microM spermidine. The increase in IC50 upon addition of spermidine suggests competitive antagonism between the inhibitor and spermidine at the arcaine-sensitive polyamine site of the NMDA receptor complex.  相似文献   

6.
It has been suggested that the anticraving drug, acamprosate, acts via the glutamatergic system, but the exact mechanism of action is still unknown. The aim of this study was to characterize [3H]acamprosate binding and establish whether this showed any relation to sites on the NMDA receptor complex. We found saturable specific binding of [3H]acamprosate to rat brain membranes with a KD of 120 microM and a Bmax of 450 pmol/mg of protein. This acamprosate binding site was sensitive to inhibition by spermidine (IC50: 13.32 +/- 1.1 microM; Hill coefficient = 1.04), and arcaine and glutamate both potentiated the inhibitory effect of spermidine. Acamprosate binding to the acamprosate binding site was also sensitive to inhibition by divalent cations (Ca2+, Mg2+, and Sr2+). Conversely, acamprosate displaced [14C]spermidine binding from rat brain membranes with an IC50 of 645 microM and a Hill coefficient = 1.74. This inhibitory effect of acamprosate was not affected by arcaine, and was associated with a significant reduction in Bmax and binding affinity for spermidine, suggesting an allosteric interaction between acamprosate and a spermidine binding site. These data are consistent with an effect of acamprosate on the NMDA receptor protein complex, and acamprosate was also found to alter binding of [3H]dizocilpine to rat brain membranes. When no agonists were present in vitro (minimal NMDA receptor activation), acamprosate markedly potentiated [3H]dizocilpine binding at concentrations in the 5 to 200 microM range. However, under conditions of maximal receptor activation (100 microM glutamate, 30 microM glycine), acamprosate only inhibited [3H]dizocilpine binding (at concentrations concentrations >100 microM). When these binding studies were performed in the presence of 1 microM spermidine, the enhancing effects of acamprosate on [3H]dizocilpine binding were inhibited. The results show that acamprosate binds to a specific spermidine-sensitive site that modulates the NMDA receptor in a complex way. Together, with data from al Quatari et al. (see next paper), this work suggests that acamprosate acts as "partial co-agonist" at the NMDA receptor, so that low concentrations enhance activation when receptor activity is low, whereas higher concentrations are inhibitory to high levels of receptor activation. This may be relevant to the clinical effects of acamprosate in alcohol-dependent patients during abstinence.  相似文献   

7.
The binding of a classical cannabinoid agonist, [3H]R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrol[1,2 ,3-de]-1,4-benzoxazin-6-yl)(1-napthalenyl)methanone monomethanesulfonate ([3H] WIN55212-2), and a selective cannabinoid receptor (CB1) antagonist, N-(piperidin-1-yl)-5-(4-chlorophenyl)1-(2,4-dichlorophenyl)-4-meth yl-1H-pyrazole-3-carboxamide hydrochloride ([3H]SR141716A), to rat cannabinoid receptors was evaluated using rat cerebellar membranes. Guanine nucleotides inhibited [3H]WIN55212-2 binding by approximately 50% at 10 microM and enhanced [3H]SR141716A binding very slightly. In the same tissue, the binding of guanosine 5'-O-[gamma-[35S]thio]triphosphate ([35S]GTP-gamma-S) was characterized and the influence of cannabinomimetics evaluated on this binding. Cannabinoid receptor agonists enhanced [35S]GTP-gamma-S binding, whereas SR141716A was devoid of action by itself but antagonized the action of cannabinoid receptor agonists. The good correlation obtained between the half maximum efficient concentration (EC50) values in [35S]GTP-gamma-S binding and the IC50 values [3H]WIN55212-2 binding shows that [35S]GTP-gamma-S binding could be a good functional assay for brain cannabinoid receptors.  相似文献   

8.
The neurotoxic fragment corresponding to residues 25-35 of the beta-amyloid (A beta) peptide [A beta-(25-35)] has been shown to exert effects on (+)-[3H]5-methyl-10, 11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine maleate ([3H]MK-801) binding to the cation channel of the N-methyl-D-aspartate (NMDA) receptor. In the present study, we investigated whether the amidated and carboxylic acid C-terminated forms of A beta-(25-35) [A beta-(25-35-NH2) and A beta-(25-35-COOH), respectively] exert effects on other excitatory amino acid receptor and cation channel types in rat cortical membranes. Both A beta-(25-35-NH2) and A beta-(25-35-COOH) gave statistically significant dose-dependent inhibitions of [3H]glutamate and [3H]glycine binding to the agonist recognition sites of the NMDA receptor. Ten microM A beta-(25-35-NH2) and A beta-(25-35-COOH) gave 25% and 20% inhibitions of [3H]glutamate binding and 75% and 70% inhibitions of [3H]glycine binding, respectively. A beta-(25-35-NH2), but not A beta-(25-35-COOH), gave a small (ca. 17% at 10 microM) statistically significant increase of [3H]amino-3-hydroxy-5-methylisoxazole-4-propionate ([3H]AMPA) binding. [3H]kainate binding was not significantly affected by either peptide. Similarly, neither peptide affected either the maximal level or EC50 value for calcium stimulation of [3H]nitrendipine binding. It is concluded that A beta-(25-35) shows slight affinity for the agonist recognition sites of the NMDA receptor, but not for other excitatory amino acid receptor types or for L-type voltage-dependent calcium channels.  相似文献   

9.
We report on a series of alkyl- and alkoxy-substituted 1,4-dihydroquinoxaline-2,3-diones (QXs), prepared as a continuation of our structure-activity relationship (SAR) study of QXs as antagonists for the glycine site of the N-methyl-D-aspartate (NMDA) receptor. The in vitro potency of these antagonists was determined by displacement of the glycine site radioligand [3H]-5,7-dichlorokynurenic acid ([3H]DCKA) in rat brain cortical membranes. In general, methyl is a good replacement for chloro or bromo in the 6-position, and alkoxy-substituted QXs have lower potencies than alkyl- or halogen-substituted QXs. Ethyl-substituted QXs are generally less potent than methyl-substituted QXs, especially in the 6-position of 5,6,7-trisubstituted QXs. Fusion of a ring system at the 6,7-positions results in QXs with low potency. Several methyl-substituted QXs are potent glycine site antagonists that have surprisingly high in vivo activity in the maximal electroshock (MES) test in mice. Among these, 7-chloro-6-methyl-5-nitro QX (14g) (IC50 = 5 nM) and 7-bromo-6-methyl-5-nitro QX (14f) (IC50 = 9 nM) are comparable in potency to 6,7-dichloro-5-nitro QX (2) (ACEA 1021) as glycine site antagonists. QX 14g has an ED50 value of 1.2 mg/kg iv in the mouse MES assay. Interestingly, alkyl QXs with log P values of 0.5 or less tend to be more bioavailable than QXs with higher log P values. QX 14g has 440-fold selectivity for NMDA vs alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, as determined electrophysiologically under steady-state conditions in oocytes expressing rat cerebral cortex poly(A)+ RNA. Overall, 14g was found to have the best combination of in vitro and in vivo potency of all the compounds tested in this and previous studies on the QX series.  相似文献   

10.
Changes in excitatory amino acid (EAA) neurotransmission are thought to play an important role in the development of parkinsonian symptoms. We examined EAA receptor binding sites in substantia nigra, striatum, globus pallidus, and cortex at 2 weeks and 2 months after MPTP (1-methyl-4-phenyl-1,2,3,6-tetra-hydroxypyridine) injection in C57bl6 mice. At 2 weeks striatal dopamine content in MPTP-treated mice was reduced to 7% of control and N-methyl-D-aspartate (NMDA)-sensitive [3H]glutamate and [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) binding sites were decreased in substantia nigra to 57 and 76% of control, respectively. In globus pallidus only [3H]AMPA binding sites were decreased to 80% of control; no significant changes were found in striatum or cortex. [3H]Kainate binding sites remained unchanged. At 2 months striatal dopamine content was reduced to 31% and no changes in EAA binding sites could be detected in any of the structures examined. [3H]Mazindol binding to striatal monoamine-uptake sites was decreased to 17% of control at 2 weeks versus 37% at 2 months. Our data indicate that modulation of NMDA and AMPA binding sites in substantia nigra and globus pallidus, the major projection areas of the subthalamic nucleus, takes place only after severe impairment of the nigrostriatal system.  相似文献   

11.
Based on the lead tetrapeptide RGDF, two possible non-peptide glycoprotein (GP) IIb-IIIa antagonists possessing an (S)-2-oxopiperazine-3-acetic acid moiety as a scaffold incorporating the indispensable Asp fragment were prepared, and (S)-4-[[trans-[4-(guanidinomethyl)-cyclohexyl]carbonyl]glycyl]-2- oxopiperazine-1,3-diacetic acid, 1a, was identified as a potential lead. A series of 3-substituted 2-oxopiperazine-1-acetic acids bearing the Arg-Gly equivalent at the 4-position were prepared and evaluated for their ability to prevent platelet aggregation and for their binding affinity for the GP IIb-IIIa receptor purified from human HEL cells. (S)-4-[(4-Amidinobenzoyl)glycyl]-3-[(methoxycarbonyl)methyl]- 2-oxopiperazine-1-acetic acid, 9 (TAK-029), inhibited in vitro human platelet aggregation with an IC50 value of 0.03 microM and GP IIb-IIIa-fibrinogen binding with an IC50 value of 0.49 nM. The [4-(2-aminoethyl)benzoyl]glycyl derivative 26 showed activity comparable to that of 9 (IC50 = 0.093 microM, guinea pig platelet aggregation assay). Compound 9 dose-dependently inhibited ex vivo platelet aggregation in guinea pigs (0.03 and 0.1 mg/kg, i.v.), and long-lasting inhibition of platelet aggregation was observed upon oral administration of 9 (3 mg/kg) to guinea pigs. On the other hand, the activity of 26 disappeared within 1 h after a dose of 1 mg/kg (i.v.). Compound 9 may therefore be useful in the clinical treatment of arterial thrombotic diseases.  相似文献   

12.
The in vitro actions were investigated of LY293111, a potent and selective leukotriene B4 (LTB4) receptor antagonist, on human neutrophils, human blood fractions, guinea pig lung membranes, and guinea pig parenchymal and tracheal strips. The IC50 for inhibiting [3H]LTB4 binding to human neutrophils was 17.6 +/- 4.8 nM. LY293111 inhibited LTB4-induced human neutrophil aggregation (IC50 = 32 +/- 5 nM), luminol-dependent chemiluminescence (IC50 = 20 +/- 2 nM), chemotaxis (IC50 = 6.3 +/- 1.7 nM), and superoxide production by adherent cells (IC50 = 0.5 nM). Corresponding responses induced by N-formyl-L-methionyl-L-leucyl-L-phenylalanine were inhibited by 100-fold higher concentrations of LY293111. LTB4 binding to guinea pig tissues and subsequent activation were also inhibited. The Ki for inhibition of [3H]LTB4 binding to lung membranes was 7.1 +/- 0.8 nM; IC50 for preventing binding of [3H]LTB4 to spleen membranes was 65 nM. The compound inhibited LTB4-induced contraction of guinea pig lung parenchyma. At 10 nM, LY293111 caused a parallel rightward shift of the LTB4 concentration-response curve. At higher concentrations, plots were shifted in a nonparallel manner, and maximum responses were depressed. LY293111 did not prevent antigen-stimulated contraction of sensitized trachea strips. At micromolar concentrations, LY293111 inhibited production of LTB4 and thromboxane B2 by plasma-depleted human blood stimulated with N-formyl-L-methionyl-L-leucyl-L-phenylalanine and thrombin. In addition, at these higher concentrations, formation of LTB4 by A23187-activated whole blood and conversion of arachidonic acid to LTB4 by a human neutrophil cytosolic fraction were inhibited. In summary, LY293111 is a second-generation LTB4 receptor antagonist with much improved potency in a variety of functional assay systems.  相似文献   

13.
A series of 4-hydroxy-3-nitroquinolin-2(1H)-ones (HNQs) was synthesized by nitration of the corresponding 2,4-quinolinediols. The HNQs were evaluated as antagonists at the glycine site of NMDA receptors by inhibition of [3H]DCKA binding to rat brain membranes. Selected HNQs were also tested for functional antagonism by electrophysiological assays in Xenopus oocytes expressing either 1a/2C subunits of NMDA receptors or rat brain AMPA receptors. The structure-activity relationships (SAR) of HNQs showed that substitutions in the 5-, 6-, and 7-positions in general increase potency while substitutions in the 8-position cause a sharp reduction in potency. Among the HNQs tested, 5,6,7-trichloro HNQ (8i) was the most potent antagonist with an IC50 of 220 nM in [3H]DCKA binding assay and a Kb of 79 nM from electrophysiological assays. Measured under steady-state conditions HNQ 8i is 240-fold selective for NMDA over AMPA receptors. The SAR of HNQs was compared with those of 1,4-dihydroquinoxaline-2,3-diones (QXs) and 1,2,3,4-tetrahydroquinoline-2,3,4-trione 3-oximes (QTOs). In general, HNQs have similar potencies to QXs with the same benzene ring substitution pattern but are about 10 times less active than the corresponding QTOs. HNQs are more selective for NMDA receptors than the corresponding QXs and QTOs. The similarity of the SAR of HNQs, QXs, and QTOs suggested that these three classes of antagonists might bind to the glycine site in a similar manner. With appropriate substitutions, HNQs represent a new class of potent and highly selective NMDA receptor glycine site antagonists.  相似文献   

14.
The anticonvulsant compound felbamate (2-phenyl-1,3-propanediol dicarbamate; FBM) appears to inhibit the function of the N-methyl-D-aspartate (NMDA) receptor complex through an interaction with the strychnine-insensitive glycine recognition site. Since we have demonstrated previously that FBM inhibits the binding of [3H]5, 7-dichlorokynurenic acid (DCKA), a competitive antagonist at the glycine site, we assessed the ability of FBM to modulate the binding of an agonist, [3H]glycine, to rat forebrain membranes and human brain sections. In contrast to its ability to inhibit [3H]5,7-DCKA binding, FBM increased [3H]glycine binding (20 nM; EC50 = 485 microM; Emax = 211% of control; nH = 1.8). FBM, but not carbamazepine, phenytoin, valproic acid or phenobarbital, also increased [3H]glycine binding (50 nM; EC50 = 142 microM; Emax = 157% of control; nH = 1.6) in human cortex sections. Autoradiographic analysis of human brain slices demonstrated that FBM produced the largest increases in [3H]glycine binding in the cortex, hippocampus and the parahippocampal gyrus. Because various ions can influence the binding of glycine-site ligands, we assessed their effects on FBM-modulation of [3H]glycine binding. FBM-enhanced [3H]glycine binding was attenuated by Zn++ and not inhibited by Mg++ in human brain. These results suggest that FBM increases [3H]glycine binding in a manner sensitive to ions which modulate the NMDA receptor. These data support the hypothesis that FBM produces anticonvulsant and neuroprotective effects by inhibiting NMDA receptor function, likely through an allosteric modulation of the glycine site.  相似文献   

15.
The effects of four glutamate receptor antagonists on alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-responses were evaluated using both in vitro and in vivo electrophysiological techniques: whole cell patch-clamp recordings from cultured mouse cortical neurones and microiontophoresis in the rat hippocampus. The compounds tested were NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline), GYKI 52466 (1-(4-amino-phenyl)-4-methyl-7,8-methyl-endioxyl-5H-2,3-benzodiaze pine), PNQX (pyrido[3, 4-f]quinoxaline-2,3-dione, 1,4,7,8,9,10-hexahydro-9-methyl-6-nitro-, methanesulfonate), NS377 (7-ethyl-5-phenyl-1,6,7,8-tetrahydro-1,7-diaza-as-indacene-2 ,3-dione), and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenz(a,d)cycloheptene-5,10-imine hydrogen maleate). In vitro, the IC50 values (in microM) for inhibition of AMPA-evoked inward currents were approximately 0.4 for NBQX, approximately 7.5 for GYKI 52466, approximately 1 for PNQX and approximately 15 for NS377. PNQX and NS377 also inhibited NMDA-induced currents with IC50 values at approximately 5 and approximately 18 microM, respectively, while NBQX at 60 microM and GYKI 52466 at 100 microM had only weak effects. The ED50 values in micromol/kg i.v. for inhibition of AMPA-evoked hippocampal neuronal spike activity in vivo were approximately 32 for NBQX, approximately 19 for GYKI 52466, approximately 17 for PNQX and approximately 11 for NS377 with efficacy values (maximal inhibition) between 71% and 81%. The ED50 values (in [Lmol/kg i.v.) and efficacy values for inhibition of NMDA-evoked hippocampal neuronal spike activity were approximately 28 with an efficacy of 61% for NBQX, approximately 16 with 35% for PNQX and approximately 6 with 61% for NS377. GYKI 52466 did not significantly affect NMDA responses, whereas MK-801 showed NMDA specificity in vivo.  相似文献   

16.
AIM: To investigate age related alterations in glutamate N-methyl-D-aspartate (NMDA) receptor binding produced by the modulatory compounds glutamate, glycine, and magnesium (Mg2+) sulphate. METHODS: The effects produced by glutamate plus glycine, and Mg2+ on the binding of [3H]MK-801, a ligand for the N-methyl-D-aspartate ion channel phencyclidine site, were measured in membrane preparations made from prefrontal cortex from human neonate (n = 5), infant (n = 6), and adult (n = 6) necropsy brains. RESULTS: Neonatal brains had the least [3H]MK-801 binding, suggesting either a low density of NMDA receptors or a more restricted access of [3H]MK-801 to cation channel sites. Infant brains had the most [3H]MK-801 binding which was stimulated to a greater extent by L-glutamate (100 microM) and glycine (10 microM) than in neonatal and adult brains. MG2+ invariably inhibited [3H]MK-801 binding. However, the Mg2+ IC50 value was higher in neonatal brain (3.6 mM) than infant (1.4 mM) and adult (0.87 mM) brains. CONCLUSION: Infant brain may have excess NMDA receptors which are hyper responsive to glutamate and glycine. The lower potency of Mg2+ to inhibit [3H]MK-801 binding in neonatal cortex may be because newborn babies have NMDA receptors without the normal complement of Mg2+ sites. The findings suggest that therapeutic NMDA receptor block in neonates requires higher concentrations of magnesium sulphate in brain tissue.  相似文献   

17.
A group of 5-aza-7-substituted-1,4-dihydroquinoxaline-2,3-diones (QXs) and the corresponding 5-(N-oxyaza)-7-substituted QXs were prepared and evaluated as antagonists of ionotropic glutamate receptors. The in vitro potency of these QXs was determined by inhibition of [3H]-5,7-dichlorokynurenic acid ([3H]DCKA) binding to N-methyl-D-aspartate (NMDA)/glycine receptors, [3H]-(S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA) binding to AMPA receptors, and [3H]kainate ([3H]KA) binding to KA receptors in rat brain membranes. 5-(N-Oxyaza)-QXs 12a-e all have low micromolar or submicromolar potency for NMDA/glycine receptors and low micromolar potencies for AMPA and KA receptors. QXs 12a-e display 2-12-fold selectivity for NMDA/glycine receptors compared to AMPA receptors, and approximately 2-fold difference between AMPA and KA potency. In contrast to other QXs that either show high selectivity for NMDA (such as ACEA 1021) or AMPA (such as NBQX) receptors, these molecules are broad spectrum antagonists of ionotropic glutamate receptors. 7-Nitro-5-(N-oxyaza)-QX (12e) is the most potent inhibitor among 12a-e, having IC50 values of 0.69, 1.3, and 2.4 microM at NMDA, AMPA, and KA receptors, respectively. In functional assays on glutamate receptors expressed in oocytes by rat cerebral cortex poly(A+) RNA, 7-chloro-5-(N-oxyaza)-QX (12a) and 7-nitro-5-(N-oxyaza)-QX (12e) have Kb values of 0.63 and 0.31 microM for NMDA/glycine receptors, and are 6- and 4-fold selective for NMDA over AMPA receptors, respectively. 5-(N-Oxyaza)-7-substituted-QXs 12a-e all have surprisingly high in vivo potency as anticonvulsants in a mouse maximal electroshock-induced seizure (MES) model. 7-Chloro-5-(N-oxyaza)-QX (12a), 7-bromo-5-(N-oxyaza)-QX (12b), and 7-methyl-5-(N-oxyaza)-QX (12c) have ED50 values of 0.82, 0.87, and 0.97 mg/kg i.v., respectively. The high in vivo potency of QXs 12a-e is particularly surprising given their low log P values (approximately -2.7). Separate studies indicate that QXs 12a and 12e are also active in vivo as neuroprotectants and also have antinociceptive activity in animal pain models. In terms of in vivo activity, these 5-(N-oxyaza)-7-substituted-QXs are among the most potent broad spectrum ionotropic glutamate antagonists reported.  相似文献   

18.
A series of novel tricyclic pyrido-phthalazine-dione derivatives was tested for antagonistic effects at the strychnine-insensitive modulatory site of the N-methyl-D-aspartate (NMDA) receptor (glycineB). All compounds displaced [3H]MDL-105,519 binding to rat cortical membranes with IC50 values of between 90 nM and 3.6 microM. In patch-clamp experiments, steady-state inward current responses of cultured hippocampal neurons to NMDA (200 microM, glycine 1 microM) were antagonized by these same compounds with IC50 values of 0.14 to 13.8 microM. The antagonism observed was typical for glycineB antagonists, i.e., they induced desensitization and their effects were not use or voltage dependent. Moreover, increasing concentrations of glycine were able to decrease their apparent potency. Much higher concentrations (>100 microM) were required to antagonize alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced currents. They were potent, systemically active NMDA receptor antagonists in vivo against responses of single neurons in the rat spinal cord to microelectrophoretic application of NMDA with ID50 values in the low milligram per kilogram i.v. range. They also inhibited pentylenetetrazol-, NMDA- and maximal electroshock-induced convulsions in mice with ED50 values ranging from 8 to 100 mg/kg i.p. The duration of anticonvulsive action was rather short but was prolonged by the organic acid transport inhibitor probenecid (200 mg/kg). The agents tested represent a novel class of systemically active glycineB antagonists with greatly improved bioavailability.  相似文献   

19.
The NMDA receptor site has been shown to be vulnerable to the effects of aging. Decreases in binding to the receptor site of up to 50% have been reported in aged animals. The present study was designed to quantitate and compare the effects of aging on multiple binding sites of the NMDA receptor complex in various brain regions. Autoradiography with [3H]glutamate, [3H]CPP, [3H]glycine, [3H]MK801 and [3H]TCP was performed on brain sections from 3, 10 and 28-30 month old C57B1/6 mice. The percent declines between 3 and 28-30 months of age in [3H]-glutamate (15-35% declines) and [3H]CPP (20-42% declines) binding were similar within most cortical regions and the caudate nucleus but [3H]glutamate binding showed less change (0-11% declines) than [3H]CPP (13-27% declines) in the occipital/temporal cortex and hippocampal regions. [3H]MK801 and [3H]TCP binding, stimulated by 10 microM glutamate, exhibited intermediate aging changes between the glycine and NMDA sites, both in percent decline (3-28% and 0-26%, respectively) and in the number of brain regions involved. [3H]Glycine binding, stimulated by 10 microM glutamate, showed no significant overall effect of age (declines ranged from 0-34%). [3H]CPP binding was significantly more affected than [3H]glycine binding in many regions. These results suggest that aging has heterogeneous effects on different sites on the NMDA receptor complex throughout the brain and on NMDA receptor agonist versus antagonist binding in selected brain regions.  相似文献   

20.
The effects of glutathione, glutathione sulfonate and S-alkyl derivatives of glutathione on the binding of glutamate and selective ligands of ionotropic N-methyl-D-aspartate (NMDA) and non-NMDA receptors were studied with mouse synaptic membranes. The effects of glutathione and its analogues on 45Ca2+ influx were also estimated in cultured rat cerebellar granule cells. Reduced and oxidized glutathione, glutathione sulfonate, S-methyl-, -ethyl-, -propyl-, -butyl- and -pentylglutathione inhibited the Na+-independent binding of L-[3H]glutamate. They strongly inhibited also the binding of (S)-2-amino-3-hydroxy-5-[3H]methyl-4-isoxazolepropionate [3H]AMPA (IC50 values: 0.8-15.9 microM). S-Alkylation of glutathione rendered the derivatives unable to inhibit [3H]kainate binding. The NMDA-sensitive binding of L-[3H]glutamate and the binding of 3-[(R)-2-carboxypiperazin-4-yl][1,2-(3)H]propyl-1-phosphonate ([3H]CPP, a competitive antagonist at NMDA sites) were inhibited by the peptides at micromolar concentrations. The strychnine-insensitive binding of the NMDA coagonist [3H]glycine was attenuated only by oxidized glutathione and glutathione sulfonate. All peptides slightly enhanced the use-dependent binding of [3H]dizocilpine (MK-801) to the NMDA-gated ionophores. This effect was additive with the effect of glycine but not with that of saturating concentrations of glutamate or glutamate plus glycine. The glutamate- and NMDA-evoked influx of 45Ca2+ into cerebellar granule cells was inhibited by the S-alkyl derivatives of glutathione. We conclude that besides glutathione the endogenous S-methylglutathione and glutathione sulfonate and the synthetic S-alkyl derivatives of glutathione act as ligands of the AMPA and NMDA receptors. In the NMDA receptor-ionophore these glutathione analogues bind preferably to the glutamate recognition site via their gamma-glutamyl moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号