首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选用聚乙烯醇(PVA)、壳聚糖(CS)、海藻酸钠(SA)为原料,通过静电纺丝和交联处理组合工艺制备"三明治"结构PVA/CS/SA静电纺纳米纤维膜。利用扫描电子显微镜(SEM)表征PVA/CS/SA静电纺纳米纤维膜形貌结构,综合评价医用敷料溶胀率和失重率,考察其在伤口愈合领域的应用性能。其中,PVA/CS静电纺纳米纤维膜纤维平均直径为(488±201)nm,PVA/SA静电纺纳米纤维膜纤维平均直径为(534±265)nm,所制备的"三明治"结构PVA/CS/SA静电纺纳米纤维膜平均溶胀率为296.5%,平均失重率为74.3%。  相似文献   

2.
通过调节溶液质量分数、质量比、纺丝电压、供液速度、接收距离和辊筒转速等工艺参数,探讨不同条件对静电纺聚乙烯醇(PVA)/海藻酸钠(SA)复合纳米纤维膜的影响,制备纤维形貌优良的复合纳米纤维膜。使用场发射扫描电镜(FE-SEM)观察复合纳米纤维膜的形貌,并分析纤维直径及其分布。结果表明:最优工艺参数为聚乙烯醇质量分数10%、海藻酸钠质量分数2%、质量比8∶2、纺丝电压19 kV、供液速度1.6 mL/h、接收距离19 cm、辊筒转速300 r/min。此时,可得到形貌良好、分布均匀,平均直径为120.8 nm的复合纳米纤维。  相似文献   

3.
采用静电纺丝技术制备了聚乙烯醇(PVA)纳米纤维毡,主要考察了纺丝液浓度和纺丝电压对静电纺纤维形成及其微观形貌的影响。实验结果表明:纺丝液的浓度对纤维的形成和形貌起着决定性作用,随着PVA质量分数的增加,在纺丝过程中纺丝液逐渐从液滴转变为均匀的纤维,纤维直径逐渐增加,当纺丝液的PVA质量分数为6%时,纤维形貌最佳;随着纺丝电压的提高,纤维平均直径先是有一定程度的降低,但随后降低幅度变得很小。通过实验确定了制备PVA纳米纤维毡的最佳工艺为:纺丝液的PVA质量分数6%,纺丝电压18kV,接收距离11cm,挤出速度0.5ml/h。  相似文献   

4.
利用静电纺丝技术制备聚乙烯醇/淀粉(PVA/SS)纳米纤维膜,再将其与PP纺黏布复合。通过SEM和FTIR表征纤维表面形貌和分子结构,探究PVA/SS纳米纤维膜的最优纺丝工艺参数,并测试PVA/SS纳米纤维膜的抗水解性能及PVA/SS/PP复合膜的过滤性能。结果表明,当纺丝液质量分数为11%、PVA/SS质量比为3∶1、纺丝电压为30 kV、喂液速率为0.8 mL/h、接收距离为19 cm时,纤维表面形貌最优,经160℃热处理的PVA/SS纳米纤维膜的抗水解性能优异。采用最优工艺参数纺制的PVA/SS纳米纤维膜的孔径分布在378.00~742.00 nm,平均孔径为689.00 nm。PVA/SS/PP复合膜对直径大于0.3μm的细微颗粒的过滤效率最高可达到99.363%,过滤阻力为137 Pa,低于相关国家标准的规定。  相似文献   

5.
为研制具有缓释效果的抗菌材料,以壳聚糖(CS)、聚乙烯醇(PVA)为原料,采用静电纺丝技术制备CS/PVA 复合纳米纤维膜并负载环丙沙星;探究纺丝体系、纺丝工艺对纤维膜微观形貌、接触角、化学结构的影响,分析药物体外释放行为及载药前后试样的抗菌性。结果表明:PVA 的加入提高了CS 的可纺性;改善了纤维膜的亲水性;当纺丝电压为24 kV、CS 和PVA 质量比为1:1. 5 时,纤维膜成网均匀,形貌良好;载药纳米纤维膜具有相对较低的药物释放速率,可有效避免药物突释,且药物释放速率随纤维膜中环丙沙星质量分数的增大而增大;载药CS/PVA 纳米纤维膜对金黄色葡萄球菌具有优良的抗菌性。  相似文献   

6.
静电纺再生丝素纳米纤维形态结构的研究   总被引:15,自引:4,他引:11  
尹桂波  张幼珠 《丝绸》2005,(2):16-18
以98%甲酸为溶剂溶解再生丝素室温干燥膜后,采用静电纺丝纺制丝素纳米纤维;采用扫描电镜观察其形态结构:研究并分析了纺丝液质量分数、电压、喷丝头到收集网的距离、纺丝管口径对纤维直径及形态的影响。结果表明:质量分数为11%-19%的纺丝液静电纺丝均能获得丝素纳米纤维,质量分数为11%、13%,电压为32kV,固化距离为7cm时,能够获得平均直径分别为91、96nm的纳米纤维:纤维直径随纺丝液质量分数的增加而增大,随电压的增大而减小,可根据纺丝液质量分数和电压选择合适的固化距离和管口径。  相似文献   

7.
赵楚楚  潘志娟 《纺织学报》2015,36(11):27-33
以聚酰胺6(PA6)为原料,采用螺旋片式无针头静电纺丝设备,探究了纺丝工艺参数对静电纺PA6纳米纤维膜形态结构的影响。结果表明,在一定范围内,螺旋片式静电纺PA6纳米纤维直径随纺丝电压的增大而减小,随着纺丝距离的增大而增大,随发生器转速的增加呈波动趋势,纤维的均匀性均无明显变化。通过正交试验得到了优化工艺条件:纺丝电压70~80 KV,纺丝距离185 mm,发生器转速8 r/min。此条件下所纺纤维平均直径为163 nm,纤维CV值为26%。初步探索了等离子体纺粘丙纶(PP)基布预处理对PA6/PP复合膜粘合效果的影响。结果表明,在80 w 30 s的条件下,剥离能可较未处理试样提高2.82倍,最大剥离强力可提高1.97倍。  相似文献   

8.
配置壳聚糖(CS)与聚乙烯醇(PVA)质量比为0 ∶ 100、10 ∶ 90、20 ∶ 80、30 ∶ 70的纺丝液,并通过静电纺丝工艺制得CS/PVA纳米纤维膜.探讨纺丝液的黏度、电导率、表面张力对CS/PVA纳米纤维膜表观形貌的影响.结果表明:随着CS含量的增大,CS/PVA纺丝液黏度提高、电导率上升、表面张力下降...  相似文献   

9.
文中采用静电纺丝技术制备了负载Ag的聚乙烯醇与海藻酸钠(Ag@PVA/SA)纳米纤维膜,优化了工艺条件并测试了不同纳米纤维膜的过滤性能和抗菌性能。结果表明,制备负载银的PVA/SA复合纳米纤维膜的最佳工艺条件:聚乙烯醇质量分数10.0%,纳米银粒子质量分数5.0%,海藻酸钠浓度1.0%,纺丝电压25 kV、纺丝距离为24 cm、喂液量为0.1 mL/h;最优工艺条件下制备的负载Ag的PVA/SA复合纳米纤维膜对大肠杆菌和金黄色葡萄球菌有一定的抑制作用,过滤效率为99.2%。  相似文献   

10.
以去离子水为溶剂,配制聚乙烯醇(PVA)和丝胶(SS)质量分数不同的PVA/SS共混液,并采用静电纺丝技术纺制PVA/SS复合纳米纤维膜。研究PVA/SS复合纳米纤维的表面形貌和直径,发现:当PVA质量分数在6.0%~10.0%,PVA与SS质量比不小于1时,都能纺制出PVA/SS复合纳米纤维。该研究结果有利于将废旧丝胶再生制成功能性新材料。  相似文献   

11.
以聚丙烯腈(PAN)为原料,N,N-二甲基甲酰胺为溶剂制备纺丝液并进行静电纺丝,用熔喷聚丙烯(PP)非织造材料为基材接收静电纺PAN纳米纤维膜,制备PAN静电纺/PP熔喷复合材料。研究了静电纺丝工艺参数对纤维直径及均匀度的影响,优化了静电纺丝工艺,在此基础上改变纺丝时间控制熔喷非织造材料表面复合的静电纺纳米纤维含量,通过AFC-131滤料性能测试系统测试了PAN静电纺/PP熔喷复合材料的空气过滤性能。结果表明,在熔喷非织造材料喷覆静电纺PAN纳米纤维膜后,过滤效率明显提高,颗粒越小,过滤效率提高越多,且随喷覆时间的增加,过滤效率提高,滤阻增加,但滤阻增加值小于过滤效率增加值,综合考虑在纺丝时间为10min时,可以制备高效低阻的PAN静电纺/PP熔喷复合非织造过滤材料。  相似文献   

12.
对适用于全新风系统的高效低阻并具有抑菌性能的复合空气过滤材料进行研发。先将聚丙烯腈(PAN)静电纺纳米纤维膜沉积到优选的丙纶(PP纤维)针刺过滤材料上,测试其过滤性能,采用极差分析和灰色聚类分析法选出最优静电纺丝工艺参数;再配制石墨烯质量分数分别为0.5%、1.0%和1.5%的石墨烯/PAN静电纺丝液,基于最优静电纺丝工艺参数,制备石墨烯/PAN静电纺/PP纤维针刺复合空气过滤材料,测试并分析其过滤性能和抑菌性能。结果表明:制备PAN静电纺纳米纤维膜的最优静电纺丝工艺参数为PAN质量分数11.0%、纺丝电压15 kV、注射速度0.84 mL/h、接收距离14 cm;在最优静电纺丝工艺参数条件下,石墨烯质量分数为0.5%时,石墨烯/PAN静电纺/PP纤维针刺复合空气过滤材料的过滤性能最好。石墨烯/PAN静电纺/PP纤维针刺复合空气过滤材料高效低阻,并具有优良的抑菌性能,适用于全新风系统过滤室内空气中的微细颗粒物。  相似文献   

13.
研究了静电纺工艺条件对聚乙烯醇(PVA)纳米纤维毡力学性能的影响。结果表明,随电压升高,静电纺PVA纳米纤维毡的断裂伸长率先增加后降低,断裂强度逐渐增加;随着喷丝口与接收屏之间距离的增加,静电纺PVA纳米纤维毡的断裂伸长率和断裂强度先增加,然后迅速下降;随着纺丝液质量分数的升高,静电纺PVA纳米纤维毡的断裂伸长率增加,断裂强度先下降,然后迅速升高。  相似文献   

14.
静电纺PA 6纳米纤维膜的力学性能研究   总被引:1,自引:1,他引:0  
利用静电纺丝可形成由纳米级纤维组成的纳米纤维膜,由于该膜孔径小并具有高比表面积和高孔隙率,可用作组织工程支架、传感器感知膜、过滤材料和防护材料等。静电纺纳米纤维膜的力学性能对其适用性和耐用性有重要影响。以PA 6甲酸溶液进行静电纺丝,研究了纺丝液喂入速度和纺丝距离对静电纺PA 6纳米纤维膜力学性能的影响。结果表明:纺丝液喂入速度较低时,形成的纳米纤维膜力学性能差;纺丝距离增大时,纳米纤维膜的断裂强度降低;PA 6溶解于98%甲酸中配制成13%(质量分数)纺丝液,在喷嘴口径0.9 mm、电压30 kV下进行静电纺丝,纺丝液喂入速度在0.2~0.3 ml/h、纺丝距离为8~10 cm时可获得具有良好力学性能的PA 6纳米纤维膜。  相似文献   

15.
利用静电纺丝方法制备了聚乙烯醇(PVA)/壳聚糖(CS)纳米纤维膜,与涤棉混纺基布复合并进行拒水整理,制备出具有一定抗水溶性和抗菌性的复合织物,并分析复合织物的微观形貌及相关物理机械性能.研究表明:PVA质量分数为12%、CS质量分数为0.5%的纺丝液在纺丝电压为25 kV、接收距离为25 cm时纤维具有较好的可纺性,...  相似文献   

16.
《印染》2019,(19)
为制备出具有亲疏水双侧结构的复合纳米纤维膜,分别以聚乙烯醇(PVA)、聚丙烯酸(PAA)混合溶液和醋酸纤维素(CA)溶液作为纺丝原液进行静电纺丝成膜,然后利用轧车进行层合,制备出PVA/PAA/CA复合纳米纤维膜。采用MMT水分管理测试仪表征静电纺PVA/PAA/CA复合纳米纤维膜的水分管理性能和吸湿快干性能。结果表明,当静电纺时间排列为PVA/PAA-CA=6 h-4 h、层合压力为2 MPa时,静电纺PVA/PAA/CA复合纳米纤维膜的吸湿快干性最佳,水分管理能力可达4级。  相似文献   

17.
静电纺丝可获得丝素纳米级纤维,并以非织造布状排列,广泛用于细胞支架、伤口包覆及药物控释等。用甲酸溶解丝素室温干燥膜,研究了静电纺丝素纳米纤维非织造膜的形态结构,分析其影响因素。结果表明:非织造膜孔隙率为32.3%,孔径80~600 nm;纤维直径与纺丝液质量分数表现出高度显著线性关系,纤维直径随纺丝液质量分数的升高而增大;纤维直径开始随电压的增大而变小,之后变大;电场强度相同,高电压/长距离电场形成的纤维直径小。  相似文献   

18.
采用静电纺丝技术将羊皮胶原蛋白(COL)和聚乙烯醇(PVA)电纺沉积在亚麻织物表面,得到一种力学性能优良以及柔软亲肤的复合亚麻织物。配制质量分数为8%的COL/PVA(w/w=2∶8)纺丝溶液,在纺丝速度为0.5 mL/h、纺丝距离为15 cm、纺丝电压为25 kV的工艺条件下进行静电纺丝。研究发现:随着纺丝时间的延长,复合织物的厚度逐渐增加,回潮率不断升高,断裂强力略有提升,断裂伸长率稍有增大,而织物的透湿率和透气率略有下降;复合织物的弯曲刚性、摩擦因数、折皱回复角、柔软性有所改善;亚麻织物和胶原蛋白基纳米纤维属于物理复合,复合后织物热稳定性略有增强;纳米纤维固着在织物表面,织物变得平整光滑。  相似文献   

19.
利用多针头静电纺丝技术制备水溶性聚合物PVA纳米纤维基PM_(2.5)过滤材料,基于单因素试验及正交试验探究最佳纺丝工艺,测试其抗水解性能、红外光谱、孔径分布及过滤性能。结果表明:最佳纺丝工艺为纺丝液质量分数10%、纺丝电压30 kV、喂液速率1.0 mL/h,所得纳米纤维形貌最佳,纤维平均直径为116.99 nm、纤维直径CV值为15.09%。抗水解性能及红外光谱测试表明,与GA交联后再进行热处理能有效改善PVA的水解性。孔径分布及过滤性能测试表明,水溶性聚合物PVA纳米纤维基PM_(2.5)过滤材料是优秀的空气过滤材料,由PP纺黏布、水溶性聚合物PVA纳米纤维基PM_(2.5)过滤材料、PP纺黏布组合形成的复合过滤材料,对直径在0.3μm及以上的颗粒的过滤效率超过99%且过滤阻力仅为90 Pa,完全符合相关国家标准。  相似文献   

20.
 采用静电纺丝的方法纺制了锦纶6纳米级纤维,分析了锦纶6甲酸溶液质量分数、喷丝头与接收屏之间的距离(C-SD)和电压对纤维形态结构的影响,讨论了上述参数和静电纺锦纶6纤维直径分布之间的关系。结果表明,静电纺锦纶6纤维的直径随着纺丝液质量分数的增加而增加,锦纶6甲酸溶液在质量分数为12%左右时的静电纺丝效果最好;当电压超过15 kV时,纤维的直径随着电压的增加而减小,而且直径的分布趋于集中;C-SD对纤维直径的影响呈现波动性特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号