首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Recently, there has been wide-ranging research on the idea of biomass fuel powered externally firing micro gas turbines; but only a small subset of these studies has used experimental work to evaluate the systems. These systems have not yet been employed in Malaysia for applications in thermal energy or power generation. The objective of this study is to determine the performance of a stainless steel high-temperature heat exchanger, which was built to transfer thermal power from a biomass gasifier-combustor to the pure air turbine working fluid. The study is based on experimental work using different air blower capacities as an air supply. The heat exchanger achieved 694 °C turbine inlet temperature with an average effectiveness of 62.5%.  相似文献   

2.
不同工质对太阳能有机朗肯循环系统性能的影响   总被引:1,自引:1,他引:1  
韩中合  叶依林  刘贇 《动力工程》2012,32(3):229-234
循环工质的特性是影响有机朗肯循环系统性能的重要因素之一,在不同的蒸发温度条件下,选取R600、R600a、R245fa、R236fa、R236ea、R601、R601a、RC318及R227ea共9种有机工质,基于热力学第一定律和第二定律对其热力循环特性进行了计算分析,并对各有机工质的蒸发压力、热效率、功比和不可逆损失等进行了比较.结果表明:R245fa作为太阳能低温热发电朗肯循环系统的循环工质具有较高的热效率和效率,并且产生的系统总不可逆损失较小,是一种较理想的有机工质;其次,R236fa和R236ea作为系统循环工质也具有较为良好的性能.  相似文献   

3.
This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of ¼, ½, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 °C. For mass velocities higher than 200 kg/m2s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m2s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%.  相似文献   

4.
Xinlei Zhou  Wenke Zhang 《传热工程》2020,41(9-10):905-918
Abstract

In this paper, the performance of an organic Rankine cycle (ORC) power generating system operating with refrigerant R245fa was investigated when heat source temperature was below 200?°C. It was found the system thermal efficiency increased but the exergy efficiency of the evaporator decreased with the increase of the heat source temperature. It was also obtained that the exergy efficiency of the evaporator could reach70% when the heat source temperature was 80?°C, which was high enough to prove that the transformation efficiency between the waste heat and the electricity power was ideal. In the simulation model, the area of different parts of the heat exchanger were considered to be varied, flow rate of the waste heat and working medium, the system thermal and exergy efficiency of the evaporator were respectively calculated, the different parameter change regarding the performance influences of the ORC system were simulated. The results can be considered as a reference to research on the design of ORC power generating systems and heat exchangers.  相似文献   

5.
《Exergy》2002,2(2):113-118
In this study, an exergoeconomic analysis of condenser type parallel flow heat exchangers is presented. Exergy losses of the heat exchanger and investment and operation expenses related to this are determined with functions of steam mass flow rate and water exit temperature at constant values of thermal power of the heat exchanger at 75240 W, cold water mass flow rate and temperature. The inlet temperature of water is 18 °C and exit temperatures of water are varied from 25 °C to 36 °C. The values of temperature and pressure of saturated steam in the condenser are given to be Tcon=47 ° C and Pcon=10.53 kPa. Constant environment conditions are assumed. Annual operation hour and unit price of electrical energy are taken into account for determination of the annual operation expenses. Investment expenses are obtained according to the variation of heat capacity rate and logarithmic mean temperature difference and also heat exchanger dimension determined for each situation. The present analysis is hoped to be useful in determining the effective parameters for the most appropriate exergy losses together with operating conditions and in finding the optimum working points for the condenser type heat exchangers.  相似文献   

6.
This article is the first in a three part study on flow boiling of refrigerants R236fa and R245fa in a silicon multi-microchannel heat sink. The heat sink was composed of 67 parallel channels, which are 223 μm wide, 680 μm high and 20 mm long with 80 μm thick fins separating the channels. The base heat flux was varied from 3.6 to 221 W/cm2, the mass velocity from 281 to 1501 kg/m2 s and the exit vapour quality from 2% to 75%. The working pressure and saturation temperature were set nominally at 273 kPa and 25 °C, respectively. The present database includes 1217 local heat transfer coefficient measurements, for which three different heat transfer trends were identified, but in most cases the heat transfer coefficient increased with heat flux and was almost independent of vapour quality and mass velocity. Importantly, it was found for apparently the first time that the heat transfer coefficient as a function of vapour quality reaches a maximum at very high heat fluxes and then decreases with further increase of heat flux.  相似文献   

7.
A steam ejector refrigeration system is a low capital cost solution for utilizing industrial waste heat or solar energy. When the heat source temperature is lower than 80 °C, the utilization of the thermal energy from such a low-temperature heat source can be a considerable challenge. In this investigation, an experimental prototype for the steam ejector refrigeration system was designed and manufactured, which can operate using extra low-temperature heat source below 80 °C. The effects of the operation temperature, the nozzle exit position (NXP) and the diameter of the constant area section on the working performance of the steam ejector were investigated at generating temperatures ranging from 40 °C to 70 °C. Three ejectors with a same de Laval nozzle for the primary nozzle and three different constant-area sections were designed and fabricated. The experimental results show that a steam ejector can function for a certain configuration size of the steam ejector with a generating temperature ranging from 40 °C to 70 °C and an evaporating temperature of 10 °C. For a given NXP, the system COP and cooling capacity of the steam ejector decreased until inoperative as the diameter of the constant area section reduced. The results of this investigation provided a good solution for the refrigeration application of the steam ejector refrigeration system powered by an extra low-temperature heat source.  相似文献   

8.
《Applied Thermal Engineering》2007,27(8-9):1371-1376
A high temperature high lift solid sorption based heat transformer has been successfully designed and tested. The sorption reactor concept is based on a tube-fin heat exchanger where the heat exchanging fluids can flow through the hollow fins. The plates were brazed together with porous metal foam that was impregnated with either of the sorbents, LiCl and MgCl2. The adsorbate is ammonia. The batch system was tested as to the power delivered at high temperatures, 150–200 °C. Peak power at 200 °C was about 0.8 kW, the average power about 0.4 kW. The thermal efficiency, COP, was calculated from the experimental results to be 0.11. This is only 40% of the expected theoretical value and can largely be attributed to the thermal mass of the reactor.  相似文献   

9.
分液冷凝是一种新兴的强化传热方法,可以显著提高冷凝传热系数。将分液冷凝应用于有机闪蒸循环(OFC),采用R227ea、R236ea、R245fa、R600、R601、R600a、R601a、R1234ze和R1234yf为循环工质,分别研究了进口干度、分液干度、冷却水温升和质流密度对冷凝器换热面积的影响。研究结果表明:当进口干度较大时,换热面积会随着分液干度的增大而先减小后增大;当分液干度较小时,分液干度越接近进口干度换热面积越小。采用分液冷凝后的冷凝器换热面积相对不分液时减少13.2%~55.3%,且相对减少量随着进口干度的增大而减小。  相似文献   

10.
Exergy analysis of micro-organic Rankine heat engines is performed to identify the most suitable engine for driving a small scale reverse osmosis desalination system. Three modified engines derived from simple Rankine engine using regeneration (incorporation of regenerator or feedliquid heaters) are analyzed through a novel approach, called exergy-topological method based on the combination of exergy flow graphs, exergy loss graphs, and thermoeconomic graphs. For the investigations, three working fluids are considered: R134a, R245fa and R600. The incorporated devices produce different results with different fluids. Exergy destruction throughout the systems operating with R134a was quantified and illustrated using exergy diagrams. The sites with greater exergy destruction include turbine, evaporator and feedliquid heaters. The most critical components include evaporator, turbine and mixing units. A regenerative heat exchanger has positive effects only when the engine operates with dry fluids; feedliquid heaters improve the degree of thermodynamic perfection of the system but lead to loss in exergetic efficiency. Although, different modifications produce better energy conversion and less exergy destroyed, the improvements are not significant enough and subsequent modifications of the simple Rankine engine cannot be considered as economically profitable for heat source temperature below 100 °C. As illustration, a regenerator increases the system’s energy efficiency by 7%, the degree of thermodynamic perfection by 3.5% while the exergetic efficiency is unchanged in comparison with the simple Rankine cycle, with R600 as working fluid. The impacts of heat source temperature and pinch point temperature difference on engine’s performance are also examined. Finally, results demonstrate that energy analysis combined with the mathematical graph theory is a powerful tool in performance assessments of Rankine based power systems and permits meaningful comparison of different regenerative effects based on their contribution to systems improvements.  相似文献   

11.
With the temperature glide in saturation states, the mixture working fluids have the advantages in thermal energy conversion. In this study, through the investigation in optimum mass fractions of multicomponent mixture working fluids, the economic performance enhancement of the organic Rankine cycle system is obtained for recovering waste heat from engine. The zero ozone-depletion-potential and dry working fluids of R236fa, R245fa, and R1336mzz(Z) are selected as the components of multicomponent mixtures in the system. The net power output, heat transfer calculation, and apparatus cost evaluation are employed to evaluate the power cost of the organic Rankine cycle system. Parameters of temperatures of waste heat sources and efficiencies of expanders are taken into account. The comparisons of economic performances for single-component working fluid and multicomponent mixtures with optimum mass fractions are proposed. The results show that R245fa, having a levelized cost of energy, LCOE, of 8.75 × 10−2 $/kW-h, performs the best for single-component working fluids, better than R236fa by 1.6% and R1336mzz(Z) by 8.3%. All the two-component mixtures are superior to their single-component working fluids in economic performance. Among the three two-component mixture working fluids, R1336mzz(Z)/R236fa has the lowest LCOEmin, 8.57 × 10−2 $/kW-h, followed by R236fa/R245fa and R245fa/R1336mzz(Z). In addition, R236fa/R245fa/R1336mzz(Z) mixture, which has a LCOEmin of 8.47 × 10−2 $/kW-h, economically outperforms all other working fluids and has a lower LCOEmin than R236fa/R245fa by 1.7% and R245fa/R1336mzz(Z) by 2%.  相似文献   

12.
This paper deals with the experimental results of an unlooped pulsating heat pipe (PHP) developed and tested in an electronic thermal management field with hybrid vehicle applications in mind. The 2.5 mm inner tube diameter device was cooled by an air heat exchanger to replicate the environment of a vehicle.In order to characterize this pulsating heat pipe, four working fluids have been tested. They are acetone, methanol, water, and n-pentane, with applied thermal power ranging from 25 W to 550 W, air temperature ranging from 10 °C to 60 °C and air velocity ranging from 0.25 m s?1 to 2 m s?1. Three inclinations have also been tested according to their horizontal positions: +45° (condenser above the evaporator), 0° and ?45° (condenser below the evaporator).Among the different results, some of the most revelatory were obtained with regard to unfavourable inclination (?45°), for which the performances were very interesting considering a terrestrial application. On the other hand, one also observed low temperature limitations for water as a working fluid and degradation of performances for n-pentane tested at 60 °C air temperature. On an overall basis, however, it should be noted that the PHP functioned with high reliability and reproducibility and without any failure during the start-up or working stage.  相似文献   

13.
In this paper, the performance of organic Rankine cycle with a two‐stage turbine and internal heat exchanger, considering different dry hydrocarbons as working fluid, has been analyzed. This thermodynamic analysis is done using Engineering Equation Solver version 8.379 software. The influence of working fluid reheating has been studied and the critical temperatures for the thermal and exergy efficiencies are determined. Results show that thermal and exergy efficiencies increase with working fluid reheating and also through a two‐stage turbine. RC‐318 is a good replacement for R‐236fa, R‐113 has a better efficiency than R‐236fa, R‐245fa, and iso‐butane and finally cyclohexane can achieve the highest efficiency. Although the maximum value of efficiencies for each one of working fluids are different, but all of these maximum values almost happen at a unique value of relative pressure of the cycle. The same result has been presented for variation of turbine inlet temperature.  相似文献   

14.
In the context of heat recovery for electric power generation, Kalina cycle (a thermodynamic cycle using as working fluid a mixture of water and ammonia) and Organic Rankine Cycle (ORC) represent two different eligible technologies. In this work a comparison between the thermodynamic performances of Kalina cycle and an ORC cycle, using hexamethyldisiloxane as working fluid, was conducted for the case of heat recovery from two Diesel engines, each one with an electrical power of 8900 kWe. The maximum net electric power that can be produced exploiting the heat source constituted by the exhaust gases mass flow (35 kg/s for both engines, at 346 °C) was calculated for the two thermodynamic cycles. Owing to the relatively low useful power, for the Kalina cycle a relatively simple plant layout was assumed. Supposing reasonable design parameters and a logarithmic mean temperature difference in the heat recovery exchanger of 50 °C, a net electric power of 1615 kW and of 1603 kW respectively for the Kalina and for the ORC cycle was calculated.Although the obtained useful powers are actually equal in value, the Kalina cycle requires a very high maximum pressure in order to obtain high thermodynamic performances (in our case, 100 bar against about 10 bar for the ORC cycle). So, the adoption of Kalina cycle, at least for low power level and medium–high temperature thermal sources, seems not to be justified because the gain in performance with respect to a properly optimized ORC is very small and must be obtained with a complicated plant scheme, large surface heat exchangers and particular high pressure resistant and no-corrosion materials.  相似文献   

15.
The heat-driven auto-cascade absorption refrigeration cycle can be used at low temperatures, and a novel auto-cascade absorption refrigeration system is proposed to gain better performances with a refrigerating temperature as low as −50 °C. The new system uses a mixture of R23 + R32 + R134a/DMF as its working pair and its characteristic study is carried out under different operational conditions. It has successfully obtained a refrigerating temperature of −47.2 °C under the generating temperature of 163 °C. This refrigerating temperature is far lower than that of a traditional absorption refrigeration system with the same working pair, and it is also lower than that of an auto-cascade absorption refrigeration system using R32 + R134a/DMF as its working pair. From the experimental results, it is clearly seen that this new system shows a rapider lowering rate of refrigerating temperature than that of an auto-cascade absorption refrigeration system using R23 + R134a/DMF as its working pair. The results of experimental analyses imply that this new absorption refrigeration system can be used in the deep-freezing as low as −50 °C by utilizing low-potential thermal power. Its potential of industrial application might be greater than that of an auto-cascade absorption refrigeration system using R23 + R134a/DMF as its working pair in the future.  相似文献   

16.
有机朗肯循环是中低品位热能高效利用的有效技术之一,分液冷凝有机朗肯循环(LSCORC)是基于分液冷凝传热强化的新型热力循环。为寻找新型环保替代工质,建立LSCORC系统的热力学模型,以最大化净输出功为目标,重点考虑了雅各布数、冷热源换热匹配对系统性能的影响,对R245fa/HFOs工质进行了对比筛选。结果表明:工质的雅各布数越大,其净输出功越小;在基础工况下,R245fa/R1336mzz(Z)的热力性能及热经济性表现最佳;当热源参数变化时,雅各布数较小工质的性能表现普遍优于雅各布数较大的工质组合;当冷源参数变化时,在分液冷凝器两个流程中温度滑移和冷源温升匹配越好的工质组合,其系统净输出功越大。  相似文献   

17.
A novel heat pump and power generation integration system (HPPGIS) using solar energy as a low temperature heat source was presented in this study. This system could be operated in both an organic Rankine cycle power generation (ORC‐PG) mode and a reverse Carnot cycle heat pump (RCC‐HP) mode. Compared with a single heat pump and power generation system, this system improved the utilization efficiency of solar energy, thus showing potential for the generation of economic benefits. Contrastive analyses of different working fluids using ORC‐PG and RCC‐HP systems were conducted first, leading to the selection of R142b and R245fa as optimal fluids. Then, an experimental investigation of the system was carried out under different conditions. A heat pump and ORC system model was proposed and validated by comparing experimental and simulated values. The experimental results indicated that the HPPGIS had good feasibility and stability in both modes. In the ORC‐PG mode, HPPGIS had a power output of 1.29 kW and a thermal efficiency of 4.71% when the water inlet temperature of the evaporator was 90.03°C. In the RCC‐HP mode, HPPGIS had a COP of 3.16 and a heat capacity of 33.24 kW when the water outlet temperature of the condenser was 106.23°C.  相似文献   

18.
This article is the second in a three-part study. This second part focuses on flow boiling heat transfer of refrigerant R245fa in a silicon multi-microchannel heat sink and their comparison with the results presented in part I for refrigerant R236fa. This heat sink was the same as utilized in part I. The test conditions covered base heat fluxes from 3.6 to 190 W/cm2, mass velocities from 281 to 1501 kg/m2 s and the exit vapour qualities from 0% to 78%. The effect of saturation pressure on heat transfer was tested from 141 to 273 kPa for R245fa and the effect of sub-cooling from 0 to 19 K. The R245fa database includes 693 local heat transfer coefficient measurements, for which four different heat transfer trends were identified, although in most cases the heat transfer coefficient increased with heat flux, was almost independent of vapour quality and increased with mass velocity. The entire database, including both R245fa and R236fa measurements, was compared with four prediction methods for flow boiling heat transfer in microchannels. The three-zone model of Thome et al. (J.R. Thome, V. Dupont, A.M. Jacobi, Heat transfer model for evaporation in microchannels. Part I: presentation of the model, International J. Heat Mass Transfer 47 (2004) 3375–3385) was found to give the best predictions, capturing 90% of the data within ±30% in the slug and annular flow regimes (x > 5%).  相似文献   

19.
《Applied Thermal Engineering》2007,27(14-15):2443-2448
This paper presents the effects produced by a suction/liquid heat exchanger installed in a refrigerating cycle, evidencing that, its use can improve or decrease the system performance depending on the operating conditions. Attention is focused on developing an easy operating method in order to predict the behaviour of the system introducing the heat exchanger, changing the operating conditions and/or the refrigerant fluids. To this aim, 19 different ozone friendly fluids (R-22, R-32, R-152a, R-125, R-134a, R-236a, R-227a, RC-318, R-410A, R-413A, R-407C, R-417, R-502, R-507A, R-717, R-290, R-600, R-600a and R-1270) have been considered, varying evaporating and condensation temperatures, respectively in the range −40 °C/10 °C and 25 °C/50 °C. The advisability of the installation of the heat exchanger can be evaluated as a function of thermodynamic properties. Furthermore, a simple chart allowing to verify the effectiveness of installation of heat exchanger has been developed for each refrigerating fluids and for the specified operating conditions.  相似文献   

20.
《Applied Thermal Engineering》2007,27(5-6):988-993
A critical cycle heat pump with HFC125 was studied experimentally. The experimental result indicates that the heat pump with HFC125 can use the general components of the conventional heat pump well. Hot water with wide-range temperature can be conveniently got by the critical heat pump system through water flow control. The COPh of the critical cycle drops a little when the temperature of outlet water rises from 60 °C to 75 °C. And adding heat recovering exchanger cannot improve the performance of the cycle, but can reduce the working pressure of the cycle. Comparing with the CO2 trans-critical heat pump, HFC125 critical heat pump has a better performance of refrigeration, lower working pressure, which is especially suitable for dual-function of supplying hot water and refrigeration in the civil and industrial buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号