首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of electron back-scattering diffraction and X-ray diffraction was used to track the evolution of the microstructure and texture of a fully recrystallized Fe–24 Mn–3 Al–2 Si–1 Ni–0.06 C twinning-induced-plasticity steel during interrupted uniaxial tensile testing. Texture measurements returned the characteristic double fibre texture for face-centred cubic materials, with a relatively stronger 〈1 1 1〉 and a weaker 〈1 0 0〉 partial fibre parallel to the tensile axis. The interaction with the stable 〈1 1 1〉 oriented grains results in preferential plastic flow in the unstable 〈1 1 0〉 oriented grains. Consequently, the grains oriented along the 〈1 1 0〉 and 〈1 0 0〉 fibres record the highest and lowest values of intragranular local misorientation, respectively. The viscoplastic self-consistent model was used to simulate the macroscopic stress–strain response as well as track the evolution of bulk crystallographic texture by detailing the contributions of perfect and/or partial slip, twinning and latent hardening. The simulations revealed the dominant role of perfect slip and the limited volume effect of twinning on the texture development. The effects of initial orientation and grain interaction on the overall orientation stability during uniaxial tension showed that while the 〈1 0 0〉 fibre remains stable and does not affect the unstable orientations along the 〈1 1 0〉 fibre, the orientations along the stable 〈1 1 1〉 fibre strongly affect the unstable 〈1 1 0〉 orientations.  相似文献   

2.
This work studies deformation twins in nanocrystalline body-centered cubic Mo, including the nucleation and growth mechanisms as well as their effects on ductility, through molecular dynamics simulations. The deformation processes of nanocrystalline Mo are simulated using a columnar grain model with three different orientations. The deformation mechanisms identified, including dislocation slip, grain-boundary-mediated plasticity, deformation twins and martensitic transformation, are in agreement with previous studies. In 〈1 1 0〉 columnar grains, the deformation is dominated by twinning, which nucleates primarily from the grain boundaries by successive emission of twinning partials and thickens by jog nucleation in the grain interiors. Upon arrest by a grain boundary, the twin may either produce continuous plastic strain across the grain boundary by activating compatible twinning/slip systems or result in intergranular failure in the absence of compatible twinning/slip systems in the neighboring grain. Multiple twinning systems can be activated in the same grain, and the competition between them favors those capable of producing continuous deformation across the grain boundary.  相似文献   

3.
The microstructures and mechanical properties of Fe–23.0 Al–6.0 Ni (at.%) single crystals containing NiAl precipitates were investigated and the hardening mechanism due to the precipitates was discussed, focusing on the activated slip systems. When these alloys were slowly cooled to room temperature after homogenization at 1373 K, the NiAl phase with the B2 structure precipitated in the body-centered cubic (bcc) Fe–Al matrix, satisfying the cube-on-cube relationship with a small misfit strain. The single crystals containing the NiAl precipitates exhibited a high yield stress above 1 GPa at room temperature. In addition, the activated slip system and deformation behavior depended strongly on the loading axis. For instance, 〈1 1 1〉 slip, which is the primary slip for the bcc matrix, occurred at 〈1 4 9〉 and 〈0 0 1〉 orientations and the NiAl precipitates were sheared by the slip. A critical resolved shear stress of 〈1 1 1〉 slip in the NiAl phase was known to be extremely high, which led to strong precipitation hardening. On the other hand, at 〈5 5 7〉 and 〈0 1 1〉 orientations, 〈0 0 1〉 slip, which is the primary slip system for the NiAl precipitates, forcibly sheared the bcc Fe–Al matrix, also leading to strong hardening. Thus, in the Fe–Al–Ni alloys, the difference in the primary slip system between the bcc Fe–Al matrix and the NiAl precipitates resulted in extreme hardening. This hardening mechanism caused by the NiAl precipitates effectively increased the yield stress even at high temperatures. In fact, the crystals exhibited a high yield stress at ~1 GPa up to 823 K.  相似文献   

4.
《Acta Materialia》2007,55(9):3253-3260
Optical microscopy was used to discern the different grain orientations and grain boundaries on the polished cross-sections of near-eutectic lead-free board-level SnAgCu (SAC) solder interconnects. Strain distributions with submicron accuracy of the deformations on the cross-sections of the solder interconnects were measured when the package was subjected to thermal loading from room temperature to 100 °C. The results were correlated with the locations of different grains, grain boundaries and larger primary intermetallics. It revealed anisotropic nature of deformations in different grains of the SAC solder, which is similar to the thermomechanical behavior of pure Sn. The strain distribution in a solder interconnect varied significantly in different grain orientations. The primary intermetallics (Ag3Sn plates) also behaved very differently from the surrounding Sn matrix under the thermal loading. The demonstrated strain localization along the grain boundaries and bigger primary intermetallics provides a clue for the path of fatigue crack growth that leads to a failure because of anisotropic thermomechanical response of SAC solder during thermal cycling.  相似文献   

5.
The equiaxed solidification of Al–20 wt.% Zn alloys revealed an unexpectedly large number of fine grains which are in a twin, or near-twin, relationship with their nearest neighbors when minute amounts of Cr (1000 ppm) are added to the melt. Several occurrences of neighboring grains sharing a nearly common 〈1 1 0〉 direction with a fivefold symmetry multi-twinning relationship have been found. These findings are a very strong indication that the primary face-centered cubic Al phase forms on either icosahedron quasicrystals or nuclei of the parent stable Al45Cr7 phase, which exhibits several fivefold symmetry building blocks in its large monoclinic unit cell. They are further supported by thermodynamic calculations and by grains sometimes exhibiting orientations compatible with the so-called interlocked icosahedron. These results are important, not only because they provide an explanation of the nucleation of twinned dendrites in Al alloys, a topic that has remained unclear over the past 60 years despite several recent investigations, but also because they identify a so far neglected nucleation mechanism in aluminum alloys, which could also apply to other metallic systems.  相似文献   

6.
《Acta Materialia》2007,55(2):705-714
Molecular dynamics (MD) simulations are used to model dislocation nucleation at or near symmetric tilt bicrystal copper interfaces with 〈1 0 0〉 or 〈1 1 0〉 misorientation axes. MD simulations indicate that orientation of the opposing lattice regions and the presence of certain structural units are two critical attributes of the interface structure that affect the stress required for dislocation nucleation. Boundaries that contain the E structural unit are found to emit dislocations at comparatively low tensile stress magnitudes. A simple model is proposed to illustrate the impact of interfacial porosity and stresses acting on the slip-plane in non-glide directions on tensile interface strength. Accounting for interfacial porosity through an average measure is found to be sufficient to model the tensile strength of boundaries with a 〈1 0 0〉 misorientation axis and many boundaries with a 〈1 1 0〉 misorientation axis.  相似文献   

7.
The formation of recrystallization texture has been studied in a sintered Ni–5 at.% W alloy after heavy cold rolling (~95%) and annealing. Although the cold-rolled texture is a typical pure metal or Cu-type deformation texture on a global scale, variations in microstructure and microtexture are found in the deformed material between locally sheared regions and away those from these regions. The primary recrystallization texture consists of the cube ({1 0 0}〈0 0 1〉), a RD-rotated cube ({0 1 3}〈1 0 0〉) and twin-related orientations of these two components. The presence of both cube and the RD-rotated orientations are identified in thin bands of materials in the deformed matrix. However, predominantly cube-oriented grains nucleate and grow in regions away from the locally sheared regions. In contrast, the nucleation and growth of non-cube grains are observed in the vicinity of locally sheared regions. The formation of cube texture in Ni–5 at.% W alloy appears to occur primarily via the oriented nucleation of cube grains owing to the special properties of the cube bands.  相似文献   

8.
W. Zhai  W.L. Wang  D.L. Geng  B. Wei 《Acta Materialia》2012,60(19):6518-6527
The liquidus temperatures and enthalpies of fusion for Cu–Sn alloys are systematically measured across the whole composition range by differential scanning calorimetry (DSC). The liquidus slope vs. Sn content is derived on the basis of the measured results. The measured enthalpy of fusion is related to the Sn content by polynomial functions, which exhibit one maximum value at 55 wt.% Sn and two minimum values around 28.9 wt.% Sn and 90 wt.% Sn, respectively. The undercoolability of those liquid alloys solidifying with primary α (Cu) solid solution phase is stronger and can be further enhanced by increasing the cooling rate. However, other alloys with the preferential nucleation of intermetallic compounds display smaller undercoolings and are not influenced by cooling rate. Microstructural observations reveal that peritectic reactions can rarely be completed. With the increase in undercooling, the primary α (Cu) dendrites are refined in the peritectic Cu–22 wt.% Sn alloy. For the hyperperitectic Cu–70 wt.% Sn alloy, typical peritectic cells are formed in which the peritectic η(Cu6Sn5) phase has wrapped the primary ε(Cu3Sn) phase. The DSC curves of metatectic-type Cu–Sn alloys indicate that the metatectic transformation γ  ε + L upon cooling is an exothermic event, and a large undercooling of 70 K is required to initiate this transformation in metatectic Cu–42.5 wt.% Sn alloy. The metatectic microstructures are characterized by (ε + η) composite structures. The η phase is mainly distributed at the grain boundaries of the coarse ε phase, but are also dispersed as small particles inside ε grains. The volume fraction of the η phase increases with the Sn content.  相似文献   

9.
The room temperature deformation behavior of wrought polycrystalline uranium is studied using a combination of experimental techniques and polycrystal modeling. Electron backscatter diffraction is used to analyze the primary deformation twinning modes for wrought alpha-uranium. The {1 3 0}〈3 1 0〉 twinning mode is found to be the most prominent twinning mode, with minor contributions from the ‘{1 7 2}’〈3 1 2〉 and {1 1 2}‘〈3 7 2〉’ twin modes. Because of the large number of deformation modes, each with limited deformation systems, a polycrystalline model is employed to identify and quantify the activity of each mode. Model predictions of the deformation behavior and texture development agree reasonably well with experimental measures and provide reliable information about deformation systems.  相似文献   

10.
11.
《Acta Materialia》2007,55(6):1873-1884
Compression tests between 1250 and 1550 °C and 10−5 and 5 × 10−3 s−1 and transmission electron microscopy have been employed to investigate the high temperature mechanical properties and the deformation mechanisms of the C15 Cr2Nb Laves phase. The stress-peaks in the compression curves during yielding were explained using a mechanism similar to strain aging combined with a low initial density of mobile dislocations. The primary deformation mechanism is slip by extended dislocations with Burgers vector 1/2〈1 1 0〉, whereas twinning is more frequent at 10−4 s−1. Schmid factor analysis indicated that twinning is more probable in grains oriented so as to have two co-planar twinning systems with high and comparable resolved shear stresses. Twinning produced very anisotropic microstructures. This may be due to synchroshear: a self-pinning mechanism which requires co-operative motion of zonal dislocations.  相似文献   

12.
Mo is added to Ti–Nb alloys in order to enhance their superelasticity. The shape memory properties of Ti–(12–28)Nb–(0–4)Mo alloys are investigated in this paper. The Ti–27Nb, Ti–24Nb–1Mo, Ti–21Nb–2Mo and Ti–18Nb–3Mo alloys exhibit the most stable superelasticity with a narrow stress hysteresis among Ti–Nb–Mo alloys with Mo contents of 0, 1, 2 and 3 at.%, respectively. The ternary alloys reveal better superelasticity due to a higher critical stress for slip deformation and a larger transformation strain. A Ti–15Nb–4Mo alloy heat-treated at 973 K undergoes (2 1 1)〈1 1 1〉-type twinning during tensile testing. Twinning is suppressed in the alloy heat-treated at 923 K due to the precipitation of the α phase, allowing the alloy to deform via a martensitic transformation process. The Ti–15Nb–4Mo alloy exhibits stable superelasticity with a critical stress for slip deformation of 582 MPa and a total recovery strain of 3.5%.  相似文献   

13.
The contribution of non-octahedral {1 0 0}〈1 1 0〉 slip to texture evolution under simple shear in face-centred cubic (fcc) polycrystals was studied. It was found that, by adding the {1 0 0}〈1 1 0〉 slip system family to the usual {1 1 1}〈1 1 0〉, the ideal orientations remain the same. However, the stability of the ideal orientations, the rotation field and the rate of change of the orientation density function were affected by the non-octahedral slip activity. The stress state, the slip distribution and the form of the equipotential functions were also examined along the ideal fibres. Finally, the texture evolution in pure aluminium during equal channel angular extrusion was simulated and analysed.  相似文献   

14.
《Acta Materialia》2007,55(7):2265-2277
A single shear lap solder joint specimen with lead-free eutectic Sn–Ag solder on copper substrates was exposed to 1500 thermomechanical fatigue (TMF) cycles between −15° (3.5 h) and 150 °C (20 min) to generate intrinsic thermal strains. The 0.15-mm-thick solder joint had a cross-sectional area of 1 mm2. Orientation imaging microscopy was used to examine changes in the tin microstructure as a function of the number of TMF cycles. The tin phase consisted of embedded minority orientations within an initial dominant orientation, which varied by about 25° from one end of the joint to the other, by means of lattice curvature and low angle boundaries. Between about 150 and 750 cycles, an incremental recrystallization/grain growth process occurred where a minority solidification twin orientation grew and consumed the dominant initial orientation. An elastic FEM analysis incorporating anisotropic thermal expansion and elastic constants indicated that the final orientation had an internal stress state that was 20–100% smaller than the initial orientation, when subjected to a temperature change. The release of elastic strain energy provided the thermodynamic driving force for recrystallization/grain growth.  相似文献   

15.
An equiatomic CoCrFeMnNi high-entropy alloy, which crystallizes in the face-centered cubic (fcc) crystal structure, was produced by arc melting and drop casting. The drop-cast ingots were homogenized, cold rolled and recrystallized to obtain single-phase microstructures with three different grain sizes in the range 4–160 μm. Quasi-static tensile tests at an engineering strain rate of 10?3 s?1 were then performed at temperatures between 77 and 1073 K. Yield strength, ultimate tensile strength and elongation to fracture all increased with decreasing temperature. During the initial stages of plasticity (up to ~2% strain), deformation occurs by planar dislocation glide on the normal fcc slip system, {1 1 1}〈1 1 0〉, at all the temperatures and grain sizes investigated. Undissociated 1/2〈1 1 0〉 dislocations were observed, as were numerous stacking faults, which imply the dissociation of several of these dislocations into 1/6〈1 1 2〉 Shockley partials. At later stages (~20% strain), nanoscale deformation twins were observed after interrupted tests at 77 K, but not in specimens tested at room temperature, where plasticity occurred exclusively by the aforementioned dislocations which organized into cells. Deformation twinning, by continually introducing new interfaces and decreasing the mean free path of dislocations during tensile testing (“dynamic Hall–Petch”), produces a high degree of work hardening and a significant increase in the ultimate tensile strength. This increased work hardening prevents the early onset of necking instability and is a reason for the enhanced ductility observed at 77 K. A second reason is that twinning can provide an additional deformation mode to accommodate plasticity. However, twinning cannot explain the increase in yield strength with decreasing temperature in our high-entropy alloy since it was not observed in the early stages of plastic deformation. Since strong temperature dependencies of yield strength are also seen in binary fcc solid solution alloys, it may be an inherent solute effect, which needs further study.  相似文献   

16.
《Acta Materialia》2007,55(5):1779-1789
In Ni3Al the cold-rolled Goss texture changed to a complicated one after primary recrystallization and returned to the original Goss during the subsequent grain growth, which can be referred to as the texture memory effect. In this study, we examined the evolution of grain orientations during the grain growth using the electron backscatter diffraction (EBSD) method. It was found that just after the primary recrystallization most of the grains had a 40°〈1 1 1〉 rotation relationship to the Goss texture, the remaining grains being Goss and other textures. The formation of the 40°〈1 1 1〉 rotated grains can be explained by a multiple twinning mechanism. In the grain growth, the Goss grains, which were surrounded by the 40°〈1 1 1〉 rotated grains, grew preferentially due to the high mobility of the 40°〈1 1 1〉 grain boundaries, leading to the texture memory effect.  相似文献   

17.
The microstructures of thermoelectric TiNiSn half-Heusler alloys have been studied in detail. For concentration ratios that are slightly rich in Ni, a high density of Heusler-phase nanosized precipitates tended to precipitate within a half-Heusler matrix. The morphology and average size of the Heusler nanoprecipitates were very sensitive to the Ni concentration ratio in the half-Heusler matrix of the alloys. Smaller Heusler nanoprecipitates with coherent ellipsoidal (<5 nm) and disc (<10 nm wide) morphologies tended to precipitate within the matrices of alloys with slightly elevated Ni concentration ratios (Ti:Ni:Sn = 1.0:1.1:1.0). However, much larger coherent discs (<45 nm wide and <5 nm thick), semicoherent platelets (up to 1 μm long and <30 nm thick) and spheres (up to 1 μm wide) were observed in the matrices of the alloys with larger Ni concentration ratios (Ti:Ni:Sn = 1.0:1.2:1.0). Tetragonal structures were observed in the coherent Heusler nanoprecipitates. The formation of such structures was closely associated with the size, morphology and interface coherency of the nanoprecipitates. Moreover, most of the coherent Heusler nanoprecipitates were preferentially oriented parallel to the cubic {0 0 1}HH orientations. Interfacial defects between the Heusler and half-Heusler phases, as well as lattice point defects, Ni antisites and vacancies, were found to be closely related to the formation of the Heusler nanoprecipitates. A mechanism has been proposed in this study to describe the coarsening of the Heusler nanoprecipitates via the formation of lattice point defects and interfacial defects.  相似文献   

18.
Intermetallic compound (IMC) formations of Sn–2.8Ag–0.5Cu solder with additional 1 wt% Bi were studied for Cu-substrate during soldering at 255 °C and isothermal aging at 150 °C. It was found that addition of 1 wt% Bi into the Sn–2.8Ag–0.5Cu solder inhibits the excessive formation of intermetallic compounds during the soldering reaction and thereafter in aging condition. Though the intermetallic compound layer was Cu6Sn5, after 14 days of aging a thin Cu3Sn layer was also observed for both solders. A significant increase of intermetallic layer thickness was observed for both solders where the increasing tendency was lower for Bi-containing solder. After various days of aging, Sn–2.8Ag–0.5Cu–1.0Bi solder gives comparatively planar intermetallic layer at the solder–substrate interface than that of the Sn–2.8Ag–0.5Cu solder. The formation of intermetallic compounds during aging for both solders follows the diffusion control mechanism and the diffusion of Cu is more pronounced for Sn–2.8Ag–0.5Cu solder. Intermetallic growth rate constants for Sn–2.8Ag–0.5Cu and Sn–2.8Ag–0.5Cu–1.0Bi solders were calculated as 2.21 × 10−17 and 1.91 × 10−17 m2/s, respectively, which had significant effect on the growth behavior of intermetallic compounds during aging.  相似文献   

19.
Yuan Zhong  Ken Gall  Ting Zhu 《Acta Materialia》2012,60(18):6301-6311
Molecular dynamics simulations are performed to study the atomistic mechanisms governing the pseudoelasticity and shape memory in nickel–titanium (NiTi) nanostructures. For a 〈1 1 0〉 – oriented nanopillar subjected to compressive loading–unloading, we observe either a pseudoelastic or shape memory response, depending on the applied strain and temperature that control the reversibility of phase transformation and deformation twinning. We show that irreversible twinning arises owing to the dislocation pinning of twin boundaries, while hierarchically twinned microstructures facilitate the reversible twinning. The nanoscale size effects are manifested as the load serration, stress plateau and large hysteresis loop in stress–strain curves that result from the high stresses required to drive the nucleation-controlled phase transformation and deformation twinning in nanosized volumes. Our results underscore the importance of atomistically resolved modeling for understanding the phase and deformation reversibilities that dictate the pseudoelasticity and shape memory behavior in nanostructured shape memory alloys.  相似文献   

20.
《Acta Materialia》2008,56(18):5214-5222
Solidification paths of three ternary monotectic alloy systems, Al–Bi–Zn, Al–Sn–Cu and Al–Bi–Cu, are studied using thermodynamic calculations, both for the pertinent phase diagrams and also for specific details concerning the solidification of selected alloy compositions. The coupled composition variation in two different liquids is quantitatively given. Various ternary monotectic four-phase reactions are encountered during solidification, as opposed to the simple binary monotectic, L′  L′′ + solid. These intricacies are reflected in the solidification microstructures, as demonstrated for these three aluminum alloy systems, selected in view of their distinctive features. This examination of solidification paths and microstructure formation may be relevant for advanced solidification processing of multicomponent monotectic alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号