首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of hybrid composites was made with jute, mercerised jute, and high tenacity man-made cellulose tyre cord yarn Cordenka of dissimilar ratios by a pultrusion process and subsequent injection moulding. Composites of jute, mercerised jute, and Cordenka were also made in order to compare the properties. The matrix material was a polypropylene/ethylene block copolymer (PP), and a maleic acid anhydride grafted PP (MAPP) was used as a coupling agent. The overall fiber contain was 25%. Mechanical properties such as tensile and bending strength, tensile and bending modulus, Charpy impact strength, and heat distortion temperature (HDT) were determined. High strength (>70 MPa) and excellent impact properties (>80 kJ/m2) were achieved with pure Cordenka reinforcement. Partial substitution of jute instead of Cordenka leads to enhance stiffness properties of the composite as well as increased heat distortion temperature (HDT) values above 105 °C for all the tested compositions (25%, 50%, 75%, and 100% jute) and for an overall fiber load of 25%. On the other hand, impact strength decreases with increasing jute fraction down to 22 kJ/m2 for pure jute. A good property balance is achieved for a composite with 25 wt.% jute and 75 wt.% Cordenka, maintaining impact strength of 79 kJ/m2. Mercerisation of the jute fibers gave moderate improvements in the composite properties. Very good fiber (both jute and Cordenka) matrix adhesion was observed by SEM.  相似文献   

2.
In this study, cocoa (Theobroma cacao) pod husk (CPH) fiber reinforced thermoplastic polyurethane (TPU) was prepared by melt compounding method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber loading: 20%, 30% and 40% (by weight), with the optimum processing parameters: 190 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. Five samples were cut from the composite sheet. Mean value was taken for each composite according to ASTM standards. Effect of fiber loading on mechanical (i.e. tensile, flexural properties and impact strength) and morphological properties was studied. TPU/CPH composites showed increase in tensile strength and modulus with increase in fiber loading, while tensile strain was decreasing with increase in fiber loading. The composite also showed increase in flexural strength and modulus with increase in fiber content. Impact strength was deteriorated with increase in fiber loading. Morphology observations using Scanning Electron Microscope (SEM) showed fiber/matrix good adhesion.  相似文献   

3.
Polypropylene/aluminum–multi-walled carbon nanotube (PP/Al–CNT) composites were prepared by a twin-screw extruder. The morphology indicates that the CNTs are well embedded or implanted within Al-flakes rather than attached on the surface. During preparation of composites, the CNTs came apart from Al–CNT so that free CNTs as well as Al–CNT were observed in PP/Al–CNT composite. The crystallization temperatures of PP/CNT and PP/Al–CNT composites were increased from 111 °C for PP to 127 °C for the composites. The decomposition temperature increased by 55 °C for PP/CNT composite and 75 °C for PP/Al–CNT composite. The PP/Al–CNT composite showed higher thermal conductivity than PP/CNT and PP/Al-flake composites with increasing filler content. PP/Al–CNT composites showed the viscosity values between PP/CNT and PP/Al-flake composites. PP/Al–CNT composite showed higher tensile modulus and lower tensile strength with increasing filler content compared to PP/CNT and PP/Al-flake composites.  相似文献   

4.
Cellulose nanofibers–reinforced PVA biocomposites were prepared from peanut shell by chemical–mechanical treatments and impregnation method. The composite films were optically transparent and flexible, showed high mechanical and thermal properties. FE-SEM images showed that the isolated fibrous fragments had highly uniform diameters in the range of 15–50 nm and formed fine network structure, which is a guarantee of the transparency of biocomposites. Compared to that of pure PVA resin, the modulus and tensile strength of prepared nanocomposites increased from 0.6 GPa to 6.0 GPa and from 31 MPa to 125 MPa respectively with the fiber content as high as 80 wt%, while the light transmission of the composite only decreased 7% at a 600 nm wavelength. Furthermore, the composites exhibited excellent thermal properties with CTE as low as 19.1 ppm/K. These favorable properties indicated the high reinforcing efficiency of the cellulose nanofibers isolated from peanut shell in PVA composites.  相似文献   

5.
Using pressureless infiltration of copper into a bed of coarse (180 μm) diamond particles pre-coated with tungsten, a composite with a thermal conductivity of 720 W/(m K) was prepared. The bending strength and compression strength of the composite were measured as 380 MPa. As measured by sound velocity, the Young's modulus of the composite was 310 GPa. Model calculations of the thermal conductivity, the strength and elastic constants of the copper–diamond composite were carried out, depending on the size and volume fraction of filler particles. The coincidence of the values of bending strength and compressive strength and the relatively high deformation at failure (a few percent) characterize the fabricated diamond–copper composite as ductile. The properties of the composite are compared to the known analogues — metal matrix composites with a high thermal conductivity having a high content of filler particles (~ 60 vol.%). In strength and ductility our composite is superior to diamond–metal composites with a coarse filler; in thermal conductivity it surpasses composites of SiC–Al, W–Cu and WC–Cu, and dispersion-strengthened copper.  相似文献   

6.
Carbon/carbon composites containing zirconium were prepared using chopped carbon fiber, mesophase pitch and Zr powder by the traditional process including molding, carbonization, densification and graphitization. The influence of Zr on the microstructure and properties of the composites were investigated. Results show that Zr can improve the interface bonding, promote more perfect and larger crystallites and enhance the conductive/mechanical properties of the composites. The high in-plane thermal conductivity of 464 W/(m K) and excellent bending strength of 83.6 MPa was obtained for a Zr content of 13.9 wt% at heat treatment temperature(HTT) of 2500 °C. However the conductive/mechanical properties of the composites decrease dramatically for an higher HTT of 3000 °C. SEM micrograph of the fracture surface for the composites shows that lower disorder crystallite arrangement of fiber and carbon matrix come into being in the composites during HTT of 3000 °C, which should be responsible for the low properties. Correlation between the content of Zr and the microstructure and properties are discussed.  相似文献   

7.
Kenaf (Hibiscus Cannabinus) bast fiber reinforced poly(vinyl chloride) (PVC)/thermoplastic polyurethane (TPU) poly-blend was prepared by melt mixing method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber content: 20%, 30% and 40% (by weight), with the processing parameters: 140 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. After mixing, the composite was compressed using compressing molding machine. Mechanical properties (i.e. tensile properties, flexural properties, impact strength) were studied. Morphological properties of tensile fracture surface were studied using Scanning electron microscope (SEM). Thermal properties of the composites were studied using Thermogravimetric Analyses (TGA). PVC/TPU/KF composites have shown lower tensile strength and strain with increase in fiber content. Tensile modulus showed an increasing trend with increase in fiber content. Impact strength decreased with increase in fiber content; however, high impact strength was observed even with 40% fiber content (20.2 kJ/m2). Mean while; the 20% and 30% fiber contents showed higher impact strength of 34.9, 27.9 kJ/m2; respectively. SEM showed that there is poor fiber/matrix adhesion. Thermal degradation took place in three steps. In the first step, composites as well as the matrix had a similar stability. At the second step, matrix showed a slightly better stability than the composites. At the last step, composites showed a better stability than the matrix.  相似文献   

8.
Kenaf fibers generally has some advantages such as eco-friendly, biodegradability, renewable nature and lighter than synthetic fibers. The aims of the study are to characterize and evaluate the physical and mechanical properties of continuous unidirectional kenaf fiber epoxy composites with various fiber volume fractions. The composites materials and sampling were prepared in the laboratory by using the hand lay-up method with a proper fabricating procedure and quality control. Samples were prepared based on ASTM: D3039-08 for tensile test and the scanning electron microscopy (SEM) was employed for microstructure analysis to observe the failure mechanisms in the fracture planes. A total of 40 samples were tested for the study. Results from the study showed that the rule of mixture (ROM) analytical model has a close agreement to predict the physical and tensile properties of unidirectional kenaf fiber reinforced epoxy composites. It was also observed that the tensile strength, tensile modulus, ultimate strain and Poisson’s ratio of 40% fiber volume content of unidirectional kenaf fiber epoxy composite were 164 MPa, 18150 MPa, 0.9% and 0.32, respectively. Due to the test results, increasing the fiber volume fraction in the composite caused the increment in the tensile modulus and reduction in the ultimate tensile strain of composite.  相似文献   

9.
In the present study an attempt has been made to use turmeric spent (TS) as reinforcing filler to fabricate polypropylene (PP) green composite for load bearing and tribological applications. PP/TS composites were fabricated using varying amounts of TS viz, 10%, 20%, 30% and 40% (w/w) by twin screw extrusion method. The fabricated PP green composites were evaluated for physico-mechanical and tribological properties. Experimentally obtained tensile values were compared with theoretically predicted values using different theoretical models. Tensile modulus of composites increased from 1041 to 1771 MPa with the increase in filler addition from 0 to 40 wt.%. Flexural strength and flexural modulus of composites were improved after incorporation of TS into PP matrix. The water absorption characteristics of composites were determined. The effect of abrading distances viz., 150, 300, 450, and 600 m and different loads of 23.54 and 33.54 N at 200 rpm on the abrasive wear behaviour were studied using dry sand/rubber wheel abrasive test rig. The TS filler lowered the abrasion resistance of PP/TS composites. The wear volume loss and specific wear rate as a function of abrading distance and load were determined. The surface morphology of tensile fractured green composites and their worn surface features were examined under scanning electron microscope.  相似文献   

10.
《Composites Part A》2003,34(5):393-401
Oxidized PAN-fiber felt was carbonized to 600, 1000, and 1800 °C, respectively. Different carbon/carbon composites (C/C composites) were prepared from oxidized PAN-fiber felt, the carbonized felts, and resol-type phenol–formaldehyde resin. These composites were then carbonized and graphized at temperatures of between 600 and 2400 °C. The C/C composite made with oxidized PAN-fiber felt showed a strong fiber/matrix bonding, and those developed from the carbonized felt (heat-treatment of 1800 °C) showed a poor fiber/matrix bonding. The graphitized composites reinforced with the oxidized PAN-fiber felt resulted in having a high flexural strength (325 MPa), and the graphitized composites reinforced with the carbonized felt (carbonized at 1800 °C) had a low flexural strength (9 MPa). It was found that the stress-orientation promoted the formation of the anisotropic texture around the fibers as well as between the fibers. This felt may very well be able to provide a low-cost route for producing multidimensional C/C composites.  相似文献   

11.
In this paper, the experiments of tensile and flexural tests were carried out on composites made by reinforcing jowar as a new natural fibre into polyester resin matrix. The samples were prepared up to a maximum volume fraction of approximately 0.40 from the fibres extracted by retting and manual process, and compared with established composites like sisal and bamboo developed under similar laboratory conditions. Jowar fibre has a tensile strength of 302 MPa, modulus of 6.99 GPa and an effective density of 922 kg/m3. It was observed that the tensile strength of jowar fibre composite is almost equal to that of bamboo composite, 1.89 times to that of sisal composite and the tensile modulus is 11% and 45% greater than those of bamboo and sisal composites, respectively at 0.40 volume fraction of fibre. The flexural strength of jowar composite is 4%, 35% and the flexural modulus is 1.12 times, 2.16 times greater than those of bamboo and sisal composites, respectively. The results of this study indicate that using jowar fibres as reinforcement in polyester matrix could successfully develop a composite material in terms of high strength and rigidity for light weight applications compared to conventional sisal and bamboo composites.  相似文献   

12.
Silicon carbide (SiC) interphase was introduced by chemical vapor deposition (CVD) process to prevent carbon fiber degradation and improve fiber–matrix interface bonding of C/ZrC composite prepared via precursor infiltration and pyrolysis (PIP) process. Moderate thickness of SiC interphase in fiber bundles could increase the density of the composite, but when the thickness of SiC interphase was over 0.5 μm, more close pores formed and the density of the composite decreased. The SiC interphase could protect carbon fiber effectively from carbo-thermal reduction, but could not enhance the mechanical properties of C/ZrC composite. The flexural strength and fracture toughness of C/ZrC composites with 0.05 μm thickness SiC layer were 252 MPa and 13.6 MPa m1/2, and for those with 0.5 μm thickness SiC layer 240 MPa and 12.8 MPa m1/2, both close to the value of the composite without SiC interphase (254 MPa and 14.5 MPa m1/2), while those with 0.7 μm thickness SiC layer were only 191 MPa and 10.8 MPa m1/2, respectively. Moderate content of SiC interphase could improve the ablation property of C/ZrC composites; however excessive content of SiC interphase would decrease the ablation property.  相似文献   

13.
In this study, two types of polyimide (PI) nanofiber mats, including (1) the mats consisting of (almost) randomly overlaid PI nanofibers and (2) the mats consisting of highly aligned PI nanofibers, were prepared by the materials-processing technique of electrospinning. The nanofiber mats were subsequently used to develop composites with polyamide 6 (PA6) via the composites – fabrication method of polymer melt infiltration lamination (PMIL). Owing to superior mechanical properties (i.e., the tensile strength and modulus were 1.7 GPa and 37.0 GPa, respectively) and large specific surface area of electrospun PI nanofibers, the PI/PA6 composites with PI nanofiber mats as skeletal framework demonstrated excellent mechanical properties. In particular, the PI/PA6 composite containing 50 wt.% of aligned PI nanofibers had the tensile strength and modulus of 447 MPa and 3.0 GPa along the longitudinal direction, representing ~700% and ~500% improvements as compared to neat PA6.  相似文献   

14.
In a previous work we introduced a new family of thermoset composites of softwood fiber and allylglycidyl ether modified potato starch (AGE-starch with a degree of substitution of 1.3 and 2.3) prepared by hot pressing. To improve the processability of AGE-starch with a DS = 1.3 (LDS-3) and to increase hygromechanical properties, the LDS-3 matrix has now been partially degraded by α-amylase at 45 °C (pH 6) for 0.5, 6 and 18 h. The study shows that already a 30 min enzymatic hydrolysis has a marked effect on the modified starch molecular weight and its thermal properties. The new composites with enzyme hydrolyzed AGE-starch, generically named D-LDS-3, showed good fiber dispersion and excellent interface between the fiber and matrix as studied by SEM. Premixes of D-LDS-3 matrix and fiber showed improved processability. The water vapor absorption was evaluated at 43.2% and 82.2% RH and the stiffness and strength properties were measured. The water uptake was shown to be reduced. The strength of neat matrix D-LDS-3-6 at ambient 68% RH reached 63 MPa and Young’s modulus 3200 MPa and with 40 wt.% wood fiber reinforcement impressive 128 MPa and 4500 MPa, respectively.  相似文献   

15.
《Composites Part B》2007,38(3):367-379
This paper evaluates the effect of the addition of silane treated- and untreated- talc as the fillers on the mechanical and physico-mechanical properties of poly(lactic acid) (PLA)/recycled newspaper cellulose fibers (RNCF)/talc hybrid composites. For this purpose, 10 wt% of a talc with and without silane treatment were incorporated into PLA/RNCF (60 wt%/30 wt%) composites that were processed by a micro-compounding and molding system. PLA is utilized is a bio-based polymer that made from dextrose, a derivative of corn. Talc is also a natural product. The RNCF and talc hybrid reinforcements of PLA polymer matrix were targeted to design and engineer bio-based composites of balanced properties with added advantages of cost benefits besides the eco-friendliness of all the components in the composites. In this work, the flexural and impact properties of PLA/RNCF composites improved significantly with the addition of 10 wt% talc. The flexural and impact strength of these hybrid composites were found to be significantly higher than that made from either PLA/RNCF. The hybrid composites showed improved properties such as flexural strength of 132 MPa and flexural modulus of 15.3 GPa, while the unhybridized PLA/RNCF based composites exhibited flexural strength and modulus values of 77 MPa and 6.7 GPa, respectively. The DMA storage modulus and the loss modulus of the PLA/RNCF hybrid composites were found to increase, whereas the mechanical loss factor (tan delta) was found to decrease. The storage modulus increased with the addition of talc, because the talc generated a stiffer interface in the polymer matrix. Differential scanning calorimetry (DSC) thermograms of neat PLA and of the hybrid composites showed nearly the similar glass transition temperatures and melting temperatures. Scanning electron microscopy (SEM) micrographs of the fracture surface of Notched Izod impact specimen of 10 wt% talc filled PLA/RNCF composite showed well filler particle dispersion in the matrix and no large aggregates are present. The comparison data of mechanical properties among samples filled with silane-treated- and untreated- talc fillers showed that the hybrid composites filled with silane treated talc displayed the better mechanical prosperities relative to the other hybrid composites. Talc-filled RNCF-reinforced polypropylene (PP) hybrid composites were also made in the same way that of PLA hybrid composites for a comparison. The PLA hybrid bio-based composites showed much improvement in mechanical properties as compared to PP-based hybrid counterparts. This suggests that these PLA hybrid bio-based composites have a potential to replace glass fibers in many applications that do not require very high load bearing capabilities and these recycled newspaper cellulose fibers could be a good candidate reinforcement fiber of high performance hybrid biocomposites.  相似文献   

16.
The objective of this study was to investigate the incorporation of poplar wood fibers both with and without a novel coupling agent, alkyl ketene dimer (AKD), on the mechanical properties of wood fiber/polypropylene (PP) composites. The resulting properties were compared to those obtained with the most commonly used coupling agent, maleic anhydride grafted PP (MAPP). Tensile and impact strengths of the composites decreased with increasing poplar wood fibers content. Tensile modulus of the composites increased by the incorporation of the wood fibers content up to 70 wt% but further increment in the wood fibers decreased the tensile modulus. At the constant content of poplar wood fibers (70 wt%), the tensile strength determined for the coupled composites with 5% AKD increased by 41% in comparison with the non-coupled composites while the tensile modulus increased by 45%, the impact strength of the coupled composites increased by 38%. The performance of 5% AKD on the mechanical properties of the composites is a little better than 3% MAPP. The good performance of 5% AKD is attributed to the enhanced compatibility between the poplar wood fibers and the polymer matrix. The increase in mechanical properties of the composites demonstrated that AKD is an effective coupling agent for wood fiber/PP composites.  相似文献   

17.
The effects of extrusion processing temperature on the rheological, dynamic mechanical analysis and tensile properties of kenaf fiber/high-density polyethylene (HDPE) composites were investigated for low and high processing temperatures. The rheological data showed that the complex viscosity, storage and loss modulus were higher with high processing temperature. Complex viscosities of pure HDPE and 3.4 wt% composite with zero shear viscosity of ⩽2340 Pa s were shown to exhibit Newtonian behavior while composites of 8.5 and 17.5 wt% with zero shear viscosity ⩾30,970 Pa s displayed non-Newtonian behavior. The Han plots revealed the sensitivity of rheological properties with changes in processing temperature. An increase in storage and loss modulus and a decrease in mechanical loss factor were observed for 17.5 wt% composites at high processing temperature and not observed at low processing temperature. Processing at high temperature was found to improve the tensile modulus of composites but displayed diminished properties when processed at low processing temperature especially at high fiber content. At both low and high processing temperatures, the tensile strength and strain of the composite decreased with increased content of the fiber.  相似文献   

18.
The focus of this work was to produce short (random and aligned) and long (aligned) industrial hemp fibre reinforced polylactic acid (PLA) composites by compression moulding. Fibres were treated with alkali to improve bonding with PLA. The percentage crystallinity of PLA in composites was found to be higher than that for neat PLA and increased with alkali treatment of fibres which is believed to be due to the nucleating ability of the fibres. Interfacial shear strength (IFSS) results demonstrated that interfacial bonding was also increased by alkali treatment of fibres which also lead to improved composite mechanical properties. The best overall properties were achieved with 30 wt.% long aligned alkali treated fibre/PLA composites produced by film stacking technique leading to a tensile strength of 82.9 MPa, Young’s modulus of 10.9 GPa, flexural strength of 142.5 MPa, flexural modulus of 6.5 GPa, impact strength of 9 kJ/m2, and a fracture toughness of 3 MPa m1/2.  相似文献   

19.
By adding carbon nanotubes (CNTs) into medium temperature coal tar pitch, mesocarbon microbeads (MCMBs) were obtained via thermal condensation, then CNTs/MCMBs composites were in situ prepared using compression molding. The morphology, structure and mechanical properties of CNTs/MCMBs composites were characterized by optical microscope, digital camera, scanning electron microscope (SEM) and mechanical test machine. Results showed that CNTs were used as the nucleating agent and could inhibit the growth and coalescence of MCMBs. The optical textures of CNTs/MCMBs composites showed similar characteristics to the thermal condensation products from coal tar pitch with CNTs. The mass ratio of CNTs to coal tar pitch played an important role in the mechanical properties of CNTs/MCMBs composites. The density and bending strength of CNTs/MCMBs composite first increased and then decreased with the increase of the proportion of CNTs. When the proportion of CNTs was 5 wt%, the density of the composite reached the maximum (1.76 g/cm3). In addition, the bending strength of the composite reached the maximum (79.6 MPa) as adding 2 wt% CNTs into coal tar pitch.  相似文献   

20.
In this paper, a comparative study on the tensile properties of clay reinforced polypropylene (PP) nanocomposites (PPCN) and chopped basalt fiber reinforced PP–clay nanocomposites (PPCN-B) is presented. PP matrix are filled with 1, 3 and 5 wt.% of nanoclays. The ultimate tensile strength, yield strength, Young’s modulus and toughness are measured at various temperature conditions. The thermal conditions are included the room temperature (RT), low temperature (LT) and high temperature (HT). The basal spacing of clay in the composites is measured by X-ray diffraction (XRD). Nanoscale morphology of the samples is observed by transmission electron microscopy (TEM). Addition of nanoclay improves the yield strength and Young’s modulus of PPCN and PPCN-B; however, it reduces the ultimate tensile strength. Furthermore, the addition of chopped basalt fibers to PPCN improves the Young’s modulus of the composites. The Young’s modulus and the yield strength of both PPCN and PPCN-B are significantly high at LT (−196 °C), descend at RT (25 °C) and then low at HT (120 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号