首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research work deals with the optimisation of controllable parameters of the organic Rankine cycle (ORC) run by waste heat. Performance measures have been evaluated for different waste heat temperatures, condenser temperatures, refrigerants and mass flow rate. The design of experiment was performed on the L9 orthogonal array of Taguchi's method. Three performance measures such as thermal efficiency, exergy destruction rate and the work output were used for the assessment and optimisation of the cycle. An optimum combination of parameters obtained by Taguchi's method is compared with analytical results. The comparison suggests that the variance of results is within the desired level of confidence. Individual effect of parameters on the performance of ORC is also estimated using analysis of variance. Turbine inlet temperature has large effects on efficiency and work output. Mass flow rate of the refrigerant has the largest effect on the exergy destruction rate.  相似文献   

2.
This article examines the exhaust waste heat recovery potential of a microturbine (MT) using an organic Rankine cycle (ORC). Possible improvements in electric and exergy efficiencies as well as specific emissions by recovering waste heat from the MT exhaust gases are determined. Different dry organic working fluids are considered during the evaluation (R113, R123, R245fa, and R236fa). In general, it has been found that the use of an ORC to recover waste heat from MTs improves the combined electric and exergy efficiencies for all the evaluated fluids, obtaining increases of an average of 27% when the ORC was operated using R113 as the working fluid. It has also been found that higher ORC evaporator effectiveness values correspond to lower pinch point temperature differences and higher exergy efficiencies. Three different MT sizes were evaluated, and the results indicate that the energetic and exergetic performance as well as the reduction of specific emissions of a combined MT‐ORC is better for small MT power outputs than for larger MTs. This article also shows how the electric efficiency can be used to ascertain under which circumstances the use of a combined MT‐ORC will result in better cost, primary energy consumption, or emission reduction when compared with buying electricity directly from electric utilities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The Gas Turbine Modular Helium Reactor (GT-MHR) uses two compression stages to compress the helium and a pre-cooler and an intercooler to reduce the compressors inlet temperature, that dissipate around 308.36 MWth at the design operational conditions. This dissipated thermal energy can be used as an energy source to produce hydrogen. An energy analysis is conducted for a proposed system that includes GT-MHR combined with Organic Rankine Cycle (GT-MHR/ORC) and a Proton Exchange Membrane (PEM) electrolyzer (GT-MHR/ORC-PEM) for hydrogen production. The optimum operating parameters values of the new cycle are obtained using the Engineering Equation Solver (EES) software. Thermal efficiency has been improved from 48.6% for the simple GT-MHR cycle to 49.8% for the new combined (GT-MHR/ORC-PEM) cycle including hydrogen production at a rate of 0.0644 kg/s at the same operating conditions. However, the thermal efficiency for the combined GT-MHR/ORC was higher and reaches 50.68%. Moreover, a parametric study is carried out over a wide range of some operating conditions such as turbine inlet temperature, Compressor pressure ratio and compressor inlet temperature to investigate their effect on the new cycle performance. Results revealed that increasing the low-pressure compressor inlet temperature increases the amount of hydrogen produced while decreasing thermal efficiencies for the three cycles. Furthermore, increasing compressor pressure ratio reduces the mass flow rate of hydrogen produced util it reaches a minimum value then it starts to increase slightly, on the contrary, an opposite relationship is observed between thermal efficiencies and compressor pressure ratio. Moreover, at low compressor pressure ratio, the rate of hydrogen produced increases with increasing turbine inlet temperature; however, it decreases by increasing the turbine inlet temperature at high compressor pressure ratio. Nevertheless, a direct correlation is noticed between thermal efficiencies and turbine inlet temperature.  相似文献   

5.
X.D. Wang 《Solar Energy》2009,83(5):605-613
This paper presents the analysis of low-temperature solar Rankine cycles for power generation using zeotropic mixtures. Three typical mass fractions 0.9/0.1 (Ma) 0.65/0.35 (Mb), 0.45/0.55 (Mc) of R245fa/R152a are chosen. In the proposed temperature range from 25 °C to 85 °C, the three zeotropic mixtures are investigated as the working fluids of the low-temperature solar Rankine cycle. Because there is an obvious temperature glide during phase change for zeotropic mixtures, an internal heat exchanger (IHE) is introduced to the Rankine cycle. Investigation shows that different from the pure fluids, among the proposed zeotropic mixtures, the isentropic working fluid Mb possesses the lowest Rankine cycle efficiency. For zeotropic mixtures a significant increase of thermal efficiencies can be gained when superheating is combined with IHE. It is also indicated that utilizing zeotropic mixtures can extend the range of choosing working fluids for low-temperature solar Rankine cycles.  相似文献   

6.
This study involves the design of a single flash cycle which comprises a separator, steam turbine, condenser and pump combined with Organic Rankine Cycle (ORC). The ORC has a three-stage heat exchanger. The mass flow rate of the organic fluid varies depending on the type of organic fluid. The system is heated by geothermal water. The effect of changing the geothermal water temperature [200–260°C] on performance parameters including the power output and overall efficiency has been studied. Four working fluids (n-Butane, Isobutane, R11 and R123) were chosen depending on their properties. The results show that a drop in the source temperature (T1) by 10% will result in 9.7% and 25.3% drop in overall efficiency and net power output for Isobutane. Also, Isobutane has a drop of 4.2% in both; overall efficiency and net power output for a 10% drop in pressure ratio (rp). R11 shows the highest overall efficiency and net power output (18.76% and 24.887 MW) respectively at the design point.  相似文献   

7.
An organic Rankine cycle (ORC) machine is similar to a conventional steam cycle energy conversion system, but uses an organic fluid such as refrigerants and hydrocarbons instead of water. In recent years, research was intensified on this device as it is being progressively adopted as premier technology to convert low-temperature heat resources into power. Available heat resources are: solar energy, geothermal energy, biomass products, surface seawater, and waste heat from various thermal processes. This paper presents existing applications and analyzes their maturity. Binary geothermal and binary biomass CHP are already mature. Provided the interest to recover waste heat rejected by thermal devices and industrial processes continue to grow, and favorable legislative conditions are adopted, waste heat recovery organic Rankine cycle systems in the near future will experience a rapid growth. Solar modular power plants are being intensely investigated at smaller scale for cogeneration applications in buildings but larger plants are also expected in tropical or Sahel regions with constant and low solar radiation intensity. OTEC power plants operating mainly on offshore installations at very low temperature have been advertised as total resource systems and interest on this technology is growing in large isolated islands.  相似文献   

8.
《Energy》2004,29(8):1207-1217
This study presents an analysis of the performance of organic Rankine cycle (ORC) subjected to the influence of working fluids. The effects of various working fluids on the thermal efficiency and on the total heat-recovery efficiency have been investigated. It is found that the presence of hydrogen bond in certain molecules such as water, ammonia, and ethanol may result in wet fluid conditions due to larger vaporizing enthalpy, and is regarded as inappropriate for ORC systems. The calculated results reveal that the thermal efficiency for various working fluids is a weak function of the critical temperature. The maximum value of the total heat-recovery efficiency occurs at the appropriate evaporating temperature between the inlet temperature of waste heat and the condensing temperature. In addition, the maximum value of total heat-recovery efficiency increases with the increase of the inlet temperature of the waste heat source and decreases it by using working fluids having lower critical temperature. Analytical results using a constant waste heat temperature or based on thermal efficiency may result in considerable deviation of system design relative to the varying temperature conditions of the actual waste heat recovery and is regarded as inappropriate.  相似文献   

9.
A thermodynamic screening of 31 pure component working fluids for organic Rankine cycles (ORC) is given using BACKONE equation of state. The fluids are alkanes, fluorinated alkanes, ethers and fluorinated ethers. The ORC cycles operate between 100 and 30 °C typical for geothermal power plants at pressures mostly limited to 20 bar, but in some cases supercritical pressures are also considered. Thermal efficiencies ηth are presented for cycles of different types. In case of subcritical pressure processes one has to distinguish (1) whether the shape of the saturated vapour line in the T,s-diagram is bell-shaped or overhanging, and (2) whether the vapour entering the turbine is saturated or superheated. Moreover, in case that the vapour leaving the turbine is superheated, an internal heat exchanger (IHE) may be used. The highest ηth-values are obtained for the high boiling substances with overhanging saturated vapour line in subcritical processes with an IHE, e.g., for n-butane ηth=0.130. On the other hand, a pinch analysis for the heat transfer from the heat carrier with maximum temperature of 120 °C to the working fluid shows that the largest amount of heat can be transferred to a supercritical fluid and the least to a high-boiling subcritical fluid.  相似文献   

10.
Working fluids for high-temperature organic Rankine cycles   总被引:1,自引:0,他引:1  
Alkanes, aromates and linear siloxanes are considered as working fluids for high-temperature organic Rankine cycles (ORCs). Case studies are performed using the molecular based equations of state BACKONE and PC-SAFT. First, “isolated” ORC processes with maximum temperatures of 250 °C and 300 °C are studied at sub- or supercritical maximum pressures. With internal heat recovery, the thermal efficiencies ηth averaged over all substances amount to about 70% of the Carnot efficiency and increase with the critical temperature. Second, we include a pinch analysis for the heat transfer from the heat carrier to the ORC working fluid by an external heat exchanger (EHE). The question is for the least heat capacity flow rates of the heat carrier required for 1 MW net power output. For the heat carrier inlet temperatures of 280 °C and 350 °C are considered. Rankings based on the thermal efficiency of the ORC and on the heat capacity flow rates of the heat carrier as well as on the volume and the heat flow rates show cyclopentane to be the best working fluid for all cases studied.  相似文献   

11.
Johann Fischer 《Energy》2011,36(10):6208-6219
A comparison of optimized trilateral cycle (TLC) - systems with water as working fluid and optimized organic Rankine cycle (ORC) – systems with pure organic working fluids is presented. The study includes the heat transfer to and from the cycles. The TLC - systems were optimized by the selection of the maximum water temperature, the ORC - systems by the selection of the working fluid and the process parameters. The optimization criterion is the exergy efficiency for power production being the ratio of the net power output to the incoming exergy flow of the heat carrier. Results will be presented for five different cases specified by the inlet temperature of the heat carrier and the inlet temperature of the cooling agent. The inlet temperature pairs are (350 °C, 62 °C), (280 °C, 62 °C), (280 °C, 15 °C), (220 °C, 15 °C) and (150 °C, 15 °C). It is found that the exergy efficiency for power production is larger by 14%–29% for the TLC than for the ORC. On the other hand, the outgoing volume flows from the expander are larger for the TLC than for the ORC by a factor ranging from 2.8 for the first case to 70 for the last case.  相似文献   

12.
针对余热的有效利用,建立了有机朗肯循环-复叠式制冷系统的热力学模型,其中:有机朗肯循环系统分别采用R123、R1234ze、R245fa、R600a、RC318、R141b等六种工质;复叠式制冷系统分别采用R22/R23、R404/R23、R290/R744、R717/R744等四种工质对。选择系统?效率作为性能评价指标,运用热力学第二定律研究系统运行参数对系统?效率的影响,分析了系统各部件的?损失,并指出了能量利用的薄弱环节,提出了有效提高系统性能的建议,为系统的优化提供参考。结果表明,对系统?效率而言,R141b和R717/R744是最佳工质。系统主要部件按?损失大小依次为凝汽器、膨胀机、高温级冷凝器、发生器、高温级压缩机、低温级蒸发器、蒸发冷凝器。尽可能提高压缩机的等熵效率,优化设计换热器的结构,减小传热温差,才能减少不可逆损失,提高换热器的?效率。  相似文献   

13.
Using fuel cell systems for distributed generation (DG) applications represents a meaningful candidate to conventional plants due to their high power density and the heat recovery potential during the electrochemical reaction. A hybrid power system consisting of a proton exchange membrane (PEM) fuel cell stack and an organic Rankine cycle (ORC) is proposed to utilize the waste heat generated from PEM fuel cell. The system performance is evaluated by the steady-state mathematical models and thermodynamic laws. Meanwhile, a parametric analysis is also carried out to investigate the effects of some key parameters on the system performance, including the fuel flow rate, PEM fuel cell operating pressure, turbine inlet pressure and turbine backpressure. Results show that the electrical efficiency of the hybrid system combined by PEM fuel cell stack and ORC can be improved by about 5% compared to that of the single PEM fuel cell stack without ORC, and it is also indicated that the high fuel flow rate can reduce the PEM fuel cell electrical efficiency and overall electrical efficiency. Moreover, with an increased fuel cell operating pressure, both PEM fuel cell electrical efficiency and overall electrical efficiency firstly increase, and then decrease. Turbine inlet pressure and backpressure also have effects on the performance of the hybrid power system.  相似文献   

14.
构建有机朗肯循环变工况分析模型,研究热源条件对系统变工况性能的影响规律。结果表明:随着热源温度升高,系统的最佳蒸发压力线性增大,而涡旋膨胀机的等熵效率逐渐减小。相比额定工况,热源温度变化-30.0K与30.0K时,净输出功率变化了-32.4%与18.4%,热效率降低了4.0%与11.4%,热回收效率变化幅度分别为-9.8%及8.9%;当热源温度从423增大至483K时,系统不可逆损失的变化率为-37.1%与45.5%,火用效率的变化率为6.7%与-17.5%。相比热源流量,热源温度对系统变工况性能的影响更大。  相似文献   

15.
Low-grade heat can be converted to electricity using power plants based on conventional Rankine cycles but with an organic Rankine fluid. Design and construction of such plants have been known for a long time and they are now a commericial reality. Applications include industrial waste heat recovery systems, solar thermal systems, low-temperature geothermal power plants, stand-alone electricity generators like those used for cathodic protection of pipelines, etc. In the past, simulation studies of such systems have usually suffered from the lack of an efficient, reliable and fast algorithm to predict system performance under part-load and off-design conditions. In this study, an efficient algorithm is introduced to simulate ORC Plant performance and the part-load and off-design efficiencies of ORC Plants.  相似文献   

16.
In the present work, a waste heat power generation system is analyzed based on the criteria with and without considering the heat/exergy loss to the environment. For the criteria without considering the heat/exergy loss to the environment, the first- and second-law efficiencies display different tendencies with the variations of some system parameters. When the heat/exergy loss to the environment is taken into consideration, the first and second law efficiencies display the same tendency. Thus, choosing the appropriate expressions for the performance criteria is crucial for the optimization design of the waste heat power generation system. It is found that there are two approaches to improving the system performance: one is to improve the heat/exergy input; the other is to enhance the heat-work conversion ability of the system. The former would deteriorate the environment if the heat-work conversion ability of the system remains unchanged; the latter could reduce the environmental impact but it’s restricted by the heat/exergy input. Therefore, the optimal operation condition should be achieved at the trade-off between the heat/exergy input and the heat-work conversion ability of the system.  相似文献   

17.
Distributed power generation is gaining attention as a solution for the transmission loss and site selection in centralized power generation. Polymer-electrolyte membrane fuel cells (PEMFCs) are suitable as a distributed power source for residential areas because of their high efficiency and low environmental impact. This study proposes a combined power generation system for recovering waste heat from both the cell stack and the reformer of a PEMFC by applying an organic Rankine cycle (ORC). The best working fluid with the highest ORC power output (i.e., the highest combined system efficiency) was identified through a parametric study of different working fluids. An economic analysis was also performed for different working fluids, waste heat sources, and types of system operation. The results show that the installation cost of the ORC can be recovered within the fuel cell's lifetime in all design cases. Greater cumulative profit can be generated by maintaining the same power output as the stand-alone PEMFC system for greater efficiency than when increasing the power output to sell surplus power. The results demonstrate that the optimal heat recovery from the PEMFC system is both thermodynamically and economically beneficial.  相似文献   

18.
With the temperature glide in saturation states, the mixture working fluids have the advantages in thermal energy conversion. In this study, through the investigation in optimum mass fractions of multicomponent mixture working fluids, the economic performance enhancement of the organic Rankine cycle system is obtained for recovering waste heat from engine. The zero ozone-depletion-potential and dry working fluids of R236fa, R245fa, and R1336mzz(Z) are selected as the components of multicomponent mixtures in the system. The net power output, heat transfer calculation, and apparatus cost evaluation are employed to evaluate the power cost of the organic Rankine cycle system. Parameters of temperatures of waste heat sources and efficiencies of expanders are taken into account. The comparisons of economic performances for single-component working fluid and multicomponent mixtures with optimum mass fractions are proposed. The results show that R245fa, having a levelized cost of energy, LCOE, of 8.75 × 10−2 $/kW-h, performs the best for single-component working fluids, better than R236fa by 1.6% and R1336mzz(Z) by 8.3%. All the two-component mixtures are superior to their single-component working fluids in economic performance. Among the three two-component mixture working fluids, R1336mzz(Z)/R236fa has the lowest LCOEmin, 8.57 × 10−2 $/kW-h, followed by R236fa/R245fa and R245fa/R1336mzz(Z). In addition, R236fa/R245fa/R1336mzz(Z) mixture, which has a LCOEmin of 8.47 × 10−2 $/kW-h, economically outperforms all other working fluids and has a lower LCOEmin than R236fa/R245fa by 1.7% and R245fa/R1336mzz(Z) by 2%.  相似文献   

19.
采用低沸点双工质有机朗肯循环余热发电系统来回收钢铁生产过程中产生的的低品位余热。本文阐述目前我国低温余热回收状况,介绍有机工质的物理性质、化学性质、热力学性质等,分析运用朗肯循环余热发电的经济性和解决低沸点双工质发电系统的关键技术,结合实际工程经验对该系统进行分析。  相似文献   

20.
The exergy topological method is used to present a quantitative estimation of the exergy destroyed in an organic Rankine cycle (ORC) operating on R113. A detailed roadmap of exergy flow is presented using an exergy wheel, and this visual representation clearly depicts the exergy accounting associated with each thermodynamic process. The analysis indicates that the evaporator accounts for maximum exergy destroyed in the ORC and the process responsible for this is the heat transfer across a finite temperature difference. In addition, the results confirm the thermodynamic superiority of the regenerative ORC over the basic ORC since regenerative heating helps offset a significant amount of exergy destroyed in the evaporator, thereby resulting in a thermodynamically more efficient process. Parameters such as thermodynamic influence coefficient and degree of thermodynamic perfection are identified as useful design metrics to assist exergy‐based design of devices. This paper also examines the impact of operating parameters such as evaporator pressure and inlet temperature of the hot gases entering the evaporator on ORC performance. It is shown that exergy destruction decreases with increasing evaporator pressure and decreasing turbine inlet temperatures. Finally, the analysis reveals the potential of the exergy topological methodology as a robust technique to identify the magnitude of irreversibilities associated with real thermodynamic processes in practical thermal systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号