首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta Materialia》2007,55(4):1159-1169
The temporal evolution of the nanostructure and chemistry of a model Ni–8.5 at.% Cr–10 at.% Al alloy with the addition of 2 at.% Re was studied using transmission electron microscopy and atom-probe tomography in order to measure the number density and mean radius of the γ′ (L12) precipitates and the chemistry of the γ′-precipitates and the γ (fcc)-matrix. In this article, the coarsening behavior of the γ′-precipitates is discussed in detail and compared with the Umantsev–Olson model for multi-component alloys. In addition, the experimental results are evaluated with PrecipiCalc™ simulations. The results show that the diffusivities of the solute elements play a major role in the coarsening behavior of the γ′-precipitates and that the addition of Re retards the coarsening kinetics and stabilizes the spheroidal morphology of the precipitates by reducing the interfacial energy.  相似文献   

2.
《Acta Materialia》2007,55(4):1145-1157
The temporal evolution of the nanostructure and chemistry of a model Ni–8.5 at.% Cr–10 at.% Al alloy, with the addition of 2 at.% Re, aged at 1073 K from 0.25 to 264 h, was studied. Transmission electron microscopy and atom-probe tomography were used to measure the number density and mean radius of the γ′ (L12 structure)-precipitates and the chemistry of the γ′-precipitates and the γ (face-centered cubic)-matrix, including the partitioning behavior of all alloying elements between the γ- and γ′-phases and the segregation behavior at γ/γ′ interfaces. The precipitates remained spheroidal for an aging time of up to 264 h and, unlike commercial nickel-based superalloys containing Re, there was not confined (nonmonotonic) Re segregation at the γ/γ′ interfaces.  相似文献   

3.
4.
In situ neutron diffraction studies are carried out to characterize the micromechanical deformation occurring during tensile creep of a typical single-crystal nickel-based superalloy, CMSX-4. The loading responses of the matrix γ phase and the precipitate γ′ are distinct. Moreover, the behaviour in the tertiary creep regime (in which the γ′ phase remains intact) is qualitatively different from that in the primary creep regime (when γ′ is sheared). In tertiary creep, initial deformation of the matrix leads to a release of misfit between the phases in the (1 0 0), resulting in elastic compression of the γ in the loading direction. The load state then remains fairly constant during creep. During the initial stages of primary creep, elastic compression of the γ phase is observed until at around 2–4% creep strain this compression stabilizes as the (1 0 0) misfit is released. This is the point at which γ′ shearing is thought to begin. Subsequently, the load in the γ increases by around 200 MPa until a maximum is reached at around 8% creep strain. This load is then suddenly released, which may be due to the release of back-stress.  相似文献   

5.
《Intermetallics》2000,8(8):903-913
The evolution of the microstructure of a (β/γ ′) Ni–32 at.% Al–5 at.% Fe alloy during annealing has been studied by electron microscopy and X-ray diffraction. Annealing at 800°C and 1100°C causes a reverse martensitic transformation, L10→B2 (β), and a B2→L12 ′) phase transformation. The lower annealing temperature leads to a higher volume fraction of the γ ′-phase but a smaller size of the γ ′-particles. The kinetic laws of the coarsening and of the increase in the volume fraction of the γ ′-phase are discussed. The orientation relationships between the β and γ ′ phases appeared to be mainly of Nishiyama–Wassermann and Bain types after 800°C annealing, while Kurdjumov–Sachs and Bain orientation relationships were predominant in the alloys annealed at 1100°C. A strong correlation between the volume fraction of the γ ′-phase and the tensile characteristics of the alloy has been established.  相似文献   

6.
Rene 142, a commercial, columnar grained, gas turbine airfoil Ni-based superalloy, has been fabricated from a pre-alloyed, atomized powder by additive manufacturing using electron beam melting. Monolithic components having [0 0 1] oriented, columnar grain structures exhibited a creep-optimized 59% volume fraction of cuboidal, coherent, γ′-phase precipitates averaging 275 nm on the side, and with γ/γ′ channel widths ranging from 25 to 75 nm. Transmission electron microscopy, utilizing bright and dark field imaging of optimally oriented γ/γ′ interfaces showed prominent misfit coherency strains as δ-fringe patterns. Corresponding hardness measurements also indicated the possibility of creep strength comparable with the commercial alloy. The notable feature of this study was the monolithic development of desirable superalloy properties without conventional, multi-step heat treatments.  相似文献   

7.
《Acta Materialia》2008,56(14):3414-3421
The effect of nickel equivalent on hydrogen gas embrittlement (HGE) of austenitic stainless steels of Fe–(10–20)Ni–17Cr–2Mo alloys vacuum-melted in a laboratory, based on type 316 stainless steel, was investigated. Tensile tests were conducted in hydrogen and helium at 1 MPa in the temperature range from 80 to 300 K. It was found that HGE of the alloys below a nickel equivalent of 27% increased with decreasing temperature, reached a maximum at 200 K, and then decreased with further decreasing temperature, whereas no HGE occurred above the nickel equivalent of 27%. It was observed that the content of strain-induced α′ martensite increased with decreasing temperature and nickel equivalent, and hydrogen-induced fracture occurred mainly along α′ martensite structure. Thus, the susceptibility to HGE depended on nickel equivalent. It was discussed that HGE was controlled by strain-induced α′ martensite above 200 K, whereas it was controlled by hydrogen transport below 200 K.  相似文献   

8.
《Acta Materialia》2007,55(1):119-130
For a Ni–5.2Al–14.2Cr at.% alloy with moderate solute supersaturations, the compositional pathways, as measured with atom-probe tomography, during early to later stage γ′(L12)-precipitation (R = 0.45–10 nm), aged at 873 K, are discussed in light of a multi-component coarsening model. Employing nondilute thermodynamics, detailed model analyses during quasi-stationary coarsening of the experimental data establish that the γ/γ′ interfacial free-energy is 22–23 ± 7 mJ m−2. Additionally, solute diffusivities are significantly slower than model estimates. Strong quantitative evidence indicates that an observed γ′-supersaturation of Al results from the Gibbs–Thomson effect, providing the first experimental verification of this phenomenon. The Gibbs–Thomson relationship for a ternary system, as well as differences in measured phase equilibria with CALPHAD assessments, are considered in great detail.  相似文献   

9.
《Acta Materialia》2007,55(14):4853-4865
The chemical activities of Al and Ni in γ′-Ni3Al-containing alloys were measured using the multi-cell Knudsen effusion-cell mass spectrometry technique, over the composition range 8–32 at.% Al and temperature range T = 1400 to 1750 K. From these measurements a better understanding of the equilibrium solidification behavior of γ′-Ni3Al-containing alloys in the Ni–Al–O system was established. Specifically, these measurements revealed that (i) γ′-Ni3Al forms via the peritectiod reaction, γ + β (+Al2O3) = γ′ (+Al2O3), at 1633 ± 1 K; (ii) the {γ + β + Al2O3} phase field is stable over the temperature range 1633–1640 K; and (iii) equilibrium solidification occurs by the eutectic reaction, L (+Al2O3) = γ + β (+Al2O3), at 1640 ± 1 K and a liquid composition of 24.8 ± 0.2 at.% Al (at an unknown oxygen content). When projected onto the Ni–Al binary, this behavior is inconsistent with the current Ni–Al phase diagram and a new diagram is proposed. This new Ni–Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the γ′-Ni3Al phase field.  相似文献   

10.
Alan J. Ardell 《Acta Materialia》2013,61(20):7828-7840
Published data on the coarsening behavior of γ′ precipitates in three ternary Ni–Al–Cr alloys are examined in light of the theory of trans-interface-diffusion-controlled (TIDC) coarsening, in which the kinetics is controlled by diffusion through the coherent precipitate–matrix interface. The experimental data are independent of the equilibrium γ′ volume fraction, as expected for TIDC coarsening. Kinetics of the type 〈rn  t for the growth of precipitates of average radius 〈r〉, and X∞Al and X∞Cr  t–1/n for the variations of the far-field matrix solute concentrations, X∞Al,Cr, with aging time, t, are characteristic of TIDC coarsening. The temporal exponent n  2.4 was obtained from the fitting of published particle size distributions. Based on correlation coefficients, the dependencies of 〈rn on t and X∞Al,Cr on t?1/n were comparable for n = 2.4 and n = 3 (the temporal exponent for matrix-diffusion-controlled coarsening). The dependencies of volume fraction, f, and number density, Nv, on t are also compared with theoretical predictions. Using a thermodynamic model of the Ni–Al–Cr phase diagram, the interfacial free energy, σ, was estimated from analysis of the data; σ varies from ~14.5 to 19 mJ m–2 in the three alloys. Interfacial diffusion coefficients, also obtained from analysis of the data, are greater than those in the γ′ phase but smaller than those in the γ phase, which is consistent with the demands of the TIDC theory. Comparisons with the results from previously published work are noted and all discrepancies are discussed.  相似文献   

11.
Three-dimensional atom probe analysis is employed to characterize the Sc segregation at θ′/α-Al interfaces in Al–2.5 wt.% Cu–0.3 wt.% Sc alloys aged at 473, 523 and 573 K, respectively. The interfacial Sc concentration is quantitatively evaluated and the change in interfacial energy caused by Sc segregation is assessed, which is in turn correlated to yield strength and ductility of the alloys. The strongest interfacial Sc segregation is generated in the 523 K-aged alloy, resulting in an interfacial Sc concentration about 10 times greater than that in the matrix and a reduction of ~25% in interfacial energy. Experimental results show that the interfacial Sc segregation promotes θ′ precipitation and enhances the strengthening response. A scaling relationship between the interfacial energy and precipitation strengthening increment is proposed to account for the most notable strengthening effect observed in the 523 K-aged alloy, which is ~2.5 times that in its Sc-free counterpart and ~1.5 times that in the 473 and 573 K-aged Al–Cu–Sc alloys. The interfacial Sc segregation, however, causes a sharp drop in the ductility when the precipitate radius is larger than ~200 nm in the 523 K-aged alloy, indicative of a transition in fracture mechanisms. The underlying fracture mechanism for the low ductility regime, revealed by in situ transmission electron microscopy tensile testing, is that interfacial decohesion occurs at the θ′ precipitates ahead of crack tip and favorably aids the crack propagation. A micromechanical model is developed to rationalize the precipitate size-dependent transition in fracture mechanisms by taking into account the competition between interfacial voiding and matrix Al rupture that is tailored by interfacial Sc segregation.  相似文献   

12.
Tetragonally structured barium titanate (BaTiO3) single crystals were irradiated using 635 MeV 238U+ ions to fluences of 1 × 107, 5 × 1010 and 1.4 × 1012 ions cm?2 at room temperature. Irradiated samples were characterized using ion channeling, X-ray diffraction, helium ion microscopy and transmission electron microscopy. The results show that the ion-entry spot on the surface has an amorphous core of up to ~10 nm in diameter, surrounded by a strained lattice structure. Satellite-like defects around smaller cores are also observed and are attributed to the imperfect epitaxial recrystallization of thermal-spike-induced amorphization. The critical value of the electronic stopping power for creating observable amorphous cores is determined to be ~22 keV nm?1. Molecular dynamics simulations show an amorphous track of ~1.2 nm in radius under thermal energy deposition at 5 keV nm?1; the radius increases to ~4.5 nm at 20 keV nm?1. A linear fit of the core diameter as a function of the square root of the energy deposition rate suggests a reduction in the diameter by an average of ~8.4 nm due to thermal recrystallization if electron–phonon coupling efficiency of 100% is assumed. The simulation also reveals details of the bonding environments and shows different densities of the amorphous zones produced at different energy deposition rates.  相似文献   

13.
Cross-sectional transmission electron microscopy has demonstrated γ′-Ni3Al formation at the alloy/oxide interface during β-NiAl (1 1 0) oxidation under specific conditions. Diffusion analysis was applied to interpret this subsurface phase formation process. It showed that thermodynamically sufficient conditions for phase formation could be achieved with increasing temperature during the early oxidation stage. To stabilize continued γ′ growth, a kinetic requirement needed to be considered, which led to a thickness criterion. The predicted extent of subsurface γ′ phase formation showed good agreement with the experimental observations.  相似文献   

14.
Atom probe tomography (APT) and first-principles calculations are implemented to study the partitioning of W to the γ (face-centered cubic)- and γ′ (L12)-phases in Ni-based alloys. APT observations indicate that whereas W partitions preferentially to the γ′-phase in a ternary Ni–Al–W alloy, its partitioning behavior is reversed in favor of the γ-phase in multi-component alloys. Furthermore, the degree of W-partitioning to the γ′-phase decreases with the addition of Ta to a Ni–Al–Cr–W alloy, a trend which is consistent with Thermo-Calc simulations. First-principles calculations of the substitutional formation energies of W and Ta at 0 K predict that both elements prefer energetically sharing the Al-sublattice sites of the γ′-phase, whereas Ta has a larger tendency to partition to the γ′-phase than does W. This implies that Ta displaces W from the γ′-phase into the γ-phase in multi-component Ni-based alloys.  相似文献   

15.
《Synthetic Metals》2006,156(16-17):1004-1009
High efficiency blue PLEDs were fabricated by adding a thin interlayer between PEDT:PSS and emitting polymer layers. Two different cross-linkable alkoxysilane-based interlayer materials, X-NPB and X-PDA, were synthesized based on N,N′-bis(4-methylphenyl)-N,N′-diphenyl-1,4-phenylenediamine (PDA) and N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1-biphenyl-4,4-diamine (NPB) which are well-known OLED HTLs. The devices, with configuration of indium tin oxide (ITO)/PEDT:PSS (65 nm)/interlayer (10–20 nm)/emitting polymer layer (70 nm)/BaF2 (2 nm)/Ca (50 nm)/Al (300 nm), were fabricated by spin coating and thermal evaporation. In this device structure, the cross-linked X-NPB or X-PDA interlayers are more adherent and mechanically robust as well as impervious to spin coating of next emitting polymer layer. In addition, the devices with these interlayers exhibit a higher luminescence and current efficiency than those without interlayers because interlayers have two functions which are blocking electrons and preventing from severe quenching by PEDT:PSS.  相似文献   

16.
A new nondestructive evaluation method for detecting both creep and fatigue damages of Ni-base superalloy used in advanced gas turbine systems has been proposed by applying a scanning blue laser microscope. The change of the microtexture in a grain of the alloy due to creep and fatigue damages can be observed clearly by using this microscope. The reflectance of the γ′ (Ni3Al) phase of the alloy was found to be less than that of the γ (Ni-base alloy) phase, when a laser beam of wavelength shorter than 500 nm was radiated to the alloy. Since the microtexture of the alloy varies significantly during damage progress, it is possible to evaluate the damages quantitatively and nondestructively by observing the change of the microtexture using the laser beam with wavelength 410 nm.  相似文献   

17.
《Acta Materialia》2007,55(17):5802-5812
An unusual deformation mode involving the formation of intrinsic stacking faults in the γ matrix of experimental Ru-containing γγ′ superalloys with high Co and Re contents during high temperature creep at 950 °C/290 MPa has been observed. The morphology, distribution and dependence of these stacking faults on alloy chemistry has been investigated along with their formation mechanism. Additions of Re and Co substantially decrease the stacking fault energy of the γ matrix. The observed stacking faults in the γ matrix form by the dissociation of a/2〈1 1 0〉 matrix dislocations with Burgers vectors perpendicular to the loading direction in the early stages of creep. The dependence of creep properties on elemental additions that influence stacking fault energy is discussed.  相似文献   

18.
Alan J. Ardell 《Acta Materialia》2010,58(13):4325-4331
Data on the coarsening of γ′ (Ni3Al) precipitates in binary Ni–Al alloys are re-examined quantitatively in light of the theory of trans-interface diffusion-controlled (TIDC) coarsening, which predicts time-dependent behavior of the type 〈rn  kTt for the growth of precipitates of average radius 〈r〉 and X  κTt–1/n for the depletion of solute concentration in the matrix, X. The exponent n is intimately related to the width of the precipitate–matrix interface, δ, which depends on r as δ  rm (m = n ? 2). The scaled distribution of particle sizes (PSD) also depends on n, while the rate constants kT and κT depend on the thermophysical constants of the alloy system. In Ni–Al alloys n = 2.4, determined from analyzing three different sets of PSDs. Quantitative analysis yields interfacial free energies and chemical diffusion coefficients that agree exceptionally well with extant data. The TIDC theory is the only theory that is consistent, both qualitatively and quantitatively, with the entirety of the data.  相似文献   

19.
A novel europium(III) complex involving a carbazole fragment as hole-transporting group and an oxadiazole fragment as electron-transporting group was synthesized and used as red light-emitting material in organic light-emitting diodes (OLEDs). The complex is amorphous, and exhibits high glass transition temperature (Tg = 157 °C) and high thermal stability with a 5% weight loss temperature of 367 °C. Two devices, device 1: ITO/NPB (40 nm)/Eu(III) complex (30 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (100 nm) and device 2: ITO/NPB (40 nm)/3% Eu(III) complex: CBP (30 nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (100 nm), were fabricated, where NPB is N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine, Alq3 is tris(8-hydroxyquinoline) Al(III), CBP is 4,4′-bis(carbazole-9-yl)-biphenyl, and BCP is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, respectively. In contrast with device 1, owing to less self-quenching and better charge confinement, device 2 shows improved performances: the maximum luminance of device 2 was dramatically increased from 199 to 1845 cd/m2, the maximum current efficiency was increased from 0.69 to 2.62 cd/A, the turn-on voltage was decreased from 9.5 to 5.5 V, and higher color purity was attained.  相似文献   

20.
《Acta Materialia》2007,55(15):5045-5055
The Lifshitz, Slyozov and Wagner theory (LSW) describes the coarsening of low volume fraction dispersed particles in a supersaturated solution as governed by a t1/3 power law, while stating that ripening occurs in a self-similar manner. Only a few experiments have reported three-dimensional (3D) coarsening in binary semi-solid alloys, which differs from the LSW theory. We report here on in situ coarsening of Al–Ge32 (wt.%), which is used as a model system for a large variety of technical alloys. Numerical analysis of 2D and 3D images of the microstructure measured by X-ray radiography and microtomography reveals the evolution of the solid particles during annealing. Ripening of a grain-refined particle network is found to be quite well described by LSW theory, although somewhat smaller exponents (t1/4t1/5) are found. Changes in coarsening behavior are observed in samples which are thinner than 0.5 mm, as well as in non-equiaxed alloy microstructures, characterized by anisotropic dendrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号