首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyacrylate composites with various fillers such as multi-walled carbon nanotube (CNT), aluminum flake (Al-flake), aluminum powders and Al–CNT were prepared by a ball milling. The thermal decomposition temperature increased by as much as 64 °C for polyacrylate/Al-flake 70 wt% composite compared to polyacrylate. The thermal conductivity of polyacrylate/Al–CNT composites increased from 0.50 to 1.67 W/m K as the Al–CNT content increases from 50 to 80 wt%. The thermal conductivity of the composite sheet increases with the sheet thickness. At the given filler concentration (90 wt%), the composite filled with aluminum powder of 13 μm has a higher thermal conductivity than the one filled 3 μm powder, and the composite filled with mixture of two powders showed a synergistic effect on the thermal conductivity. The morphology indicates that the dispersion of CNT in the polyacrylate/Al-flake + CNT composite is not perfect, and agglomeration of CNTs was observed.  相似文献   

2.
Morphology, electrical properties and conductive mechanisms of polyamide 6/polypropylene/muti-walled carbon nanotubes (PA6/PP/MWNTs) composites with varied compositions and different blending sequences were investigated. The MWNTs were found to be located preferentially in the PA6 phase in the composites, whatever the PA6 was continuous or dispersed phase. While the incorporation of MWNTs changed the dispersed PA6 phase from spherical to elongated or irregular shape. The PA6/PP/MWNTs (20/80/4) composite with a dispersed PA6 phase exhibited a higher electrical conductivity in comparison with the PA6/PP/MWNTs (50/50/4) composite which has a co-continuous phase and exhibits double percolation. This was due to the formation of a conductive MWNTs networks in the PA6/PP/MWNTs (20/80/4) composite as proved by means of field emission scanning electron microscopy and rheological measurements. The morphology and electrical properties of the PA6/PP/MWNTs (20/80/4) composites were significantly influenced by blending sequences. When blending 3.9 phr MWNTs with a pre-mixed PA6/PP/MWNTs (20/80/0.1) composite, the dispersed PA6 phase formed an elongated structure, which was beneficial to the electrical properties.  相似文献   

3.
Vibration damping characteristic of nanocomposites and carbon fiber reinforced polymer composites (CFRPs) containing multiwall carbon nanotubes (CNTs) have been studied using the free and forced vibration tests. Several vibration parameters are varied to characterize the damping behavior in different amplitudes, natural frequencies and vibration modes. The damping ratio of the hybrid composites is enhanced with the addition of CNTs, which is attributed to sliding at the CNT-matrix interfaces. The damping ratio is dependent on the amplitude as a result of the random orientation of CNTs in the epoxy matrix. The natural frequency shows negligible influence on the damping properties. The forced vibration test indicates that the damping ratios of the CFRP composites increase with increasing CNT content in both the 1st and 2nd vibration modes. The CNT-epoxy nanocomposites also show similar increasing trends of damping ratio with CNT content, indicating the enhanced damping property of CFRPs arising mainly from the improved damping property of the modified matrix. The dynamic mechanical analysis further confirms that the CNTs have a strong influence on the composites damping properties. Both the dynamic loss modulus and loss factor of the nanocomposites and the corresponding CFRPs show consistent increases with the addition of CNTs, an indication of enhanced damping performance.  相似文献   

4.
采用酸化处理的多壁碳纳米管(MWCNTs)增强双酚A型氰酸酯-酚醛型氰酸酯(BCE-NCE)树脂。通过SEM、TEM对MWCNTs/BCE-NCE树脂复合材料微观结构进行表征,利用DSC、DMA和TG/DTA对MWCNTs/BCE-NCE树脂复合材料热性能进行研究,采用电子拉力机对MWCNTs/BCE-NCE树脂复合材料力学性能进行测试,采用谐振腔法对MWCNTs/BCE-NCE树脂复合材料介电性能进行测试。结果表明,混酸处理过的MWCNTs在BCE-NCE树脂基体中的分散效果较好。MWCNTs对BCE-NCE树脂热力学性能影响不大,当MWCNTs添加量为0.8wt%时,BCE-NCE树脂玻璃化转变温度(Tg)从298℃下降到285℃,但仍维持较高水平。当MWCNTs添加量为0.6wt%时,MWCNTs/BCE-NCE树脂复合材料冲击强度为11.40 kJ/m2,提高了40.7%。MWCNTs的加入增加了BCE-NCE树脂介电常数和介电损耗,当MWCNTs添加量为0.8wt%、频率为1 GHz时,MWCNTs/BCE-NCE树脂复合材料介电常数为5.1,介电损耗为0.032。因此,MWCNTs/BCE-NCE树脂复合材料未来可在耐高温复合材料和电子等行业应用。  相似文献   

5.
通过对多壁碳纳米管(MWCNTs)表面修饰合成羟基化的MWCNTs,利用羟基化的MWCNTs催化己内酯开环聚合,接着与溴代异丁酰溴反应,合成MWCNTs接枝聚己内酯(PCL)的大分子引发剂,利用该大分子引发剂引发N-异丙基丙烯酰胺单体进行原子转移自由基活性聚合(ATRP),成功制备了MWCNTs/PCL-b-PNIPAM复合材料。利用FTIR、TGA、XRD、NMR及TEM对产物进行表征。考察了MWCNTs/PCL-b-PNIPAM复合材料的结晶性能及在氯仿中的溶混性。XRD结果表明:MWCNTs/PCL-b-PNIPAM复合材料的结晶峰与PCL-b-PNIPAM嵌段共聚物基本一致,并且MWCNTs/PCL-b-PNIPAM复合材料在氯仿溶液中有很好的混溶性。   相似文献   

6.
This study investigates the thermal conductivity of epoxy composites containing two hybrid fillers which are multi-walled carbon nanotubes (MWCNTs) and aluminum nitride (AlN). To form a covalent bonds between the fillers and the epoxy resin, poly(glycidyl methacrylate) (PGMA) were grafted onto the surface of nano-sized MWCNTs via free radical polymerization and micro-sized AlN was modified by zirconate coupling agent. Results show that functionalized fillers improve thermal conductivity of epoxy composites, due to the good dispersion and interfacial adhesion, which is confirmed by scanning electron microscope. Furthermore, the hybrid fillers provide synergetic effect on heat conductive networks. The thermal conductivity of epoxy composites containing 25 vol.% modified AlN and 1 vol.% functionalized MWCNTs is 1.21 W/mK, comparable to that of epoxy composites containing 50 vol.% untreated AlN (1.25 W/mK), which can reduce the half quantity of AlN filler used.  相似文献   

7.
A modified method for interconnecting multi-walled carbon nanotubes (MWCNTs) was put forward. And interconnected MWCNTs by reaction of acyl chloride and amino groups were obtained. Scanning electron microscopy shows that hetero-junctions of MWCNTs with different morphologies were formed. Then specimens of pristine MWCNTs, chemically functionalized MWCNTs and interconnected MWCNTs reinforced epoxy resin composites were fabricated by cast moulding. Tensile properties and fracture surfaces of the specimens were investigated. The results show that, compared with pristine MWCNTs and chemically functionalized MWCNTs, the chemically interconnected MWCNTs improved the fracture strain and therefore the toughness of the composites significantly.  相似文献   

8.
Dense silicon nitride (Si3N4) composites with various amounts (0-8.6 vol%) of multi-walled carbon nanotubes (MWCNTs) are electrically characterised by combining macroscopic dc-ac and nanoscale conductive scanning force microscopy (C-SFM) measurements. In this way, a coherent picture of the dominant charge transport mechanisms in Si3N4/MWCNTs composites is presented. A raise of more than 10 orders of magnitude in the electrical dc conductivity compared to the blank specimen is measured for MWCNTs contents above 0.9 vol%. Semiconductor and metallic-like behaviours are observed depending on both the temperature and the MWCNTs content. Macroscopic measurements are further supported at the nanoscale by means of C-SFM. The metallic-type conduction is associated to charge transporting along the nanotube shells, whereas the semiconductor behaviour is linked to hopping conduction across nanotube-nanotube contacts and across intrinsic defect clusters within the nanotubes.  相似文献   

9.
Strengthening efficiency of multi-walled carbon nanotubes (MWCNTs) is investigated for aluminum-based composites with grain sizes ranging from ∼250 to ∼65 nm. The strength of composites is significantly enhanced proportional to an increase of the MWCNT volume. However, the increment differs depending on deformation mode of the matrix. The strengthening efficiency of MWCNTs in ultrafine-grained composites is comparable with that predicted by the discontinuous fiber model, whereas the efficiency becomes half of the theoretical prediction as grain size is reduced below ∼70 nm. For nano-grained aluminum, activities of forest dislocations diminish and dislocations emitted from grain boundaries are dynamically annihilated during the recovery process, providing a weak plastic strain field around MWCNTs. The observation may provide a basic understanding of the strengthening behavior of nano-grained metal matrix composites.  相似文献   

10.
通过简单高能球磨和高温热解法制备了锂离子电池Si/C电极复合材料,聚丙烯腈(PAN)包覆的纳米颗粒(Si@PAN)与多壁碳纳米管(MWCNTs)混合,制得Si@环化PAN/MWCNTs(Si@c-PAN/MWCNTs)复合材料作为锂离子电池的负极材料。包覆在纳米Si外层的高温热解后的PAN能够有效缓冲Si在充放电过程中巨大的体积变化产生的应力,同时MWCNTs作为Si@c-PAN的基体阻止Si@c-PAN颗粒的团聚,也提高了Si@c-PAN/MWCNTs复合材料电极的导电性能。电化学测试结果表明,Si@c-PAN/MWCNTs复合材料电极在电流密度为0.2 A/g时,其首次放电比容量达到2 098 mA?h/g,库伦效率达到86%;循环50次后Si@c-PAN/MWCNTs复合材料电极的可逆比容量仍能够达到1 278 mA?h/g,在2 A/g放电时其比容量为600 mA?h/g,仍保持良好的循环稳定性。   相似文献   

11.
环氧树脂具有优异的热性能及力学性能,但本身脆性较大。为制备低成本、高性能的环氧树脂体系,使用聚醚砜(PES)和多壁碳纳米管(MWCNT)对环氧树脂进行增韧,制备了不同PES含量的PES-环氧树脂共混物,讨论了PES含量对环氧树脂力学性能的影响;采用熔融法,并配合使用机械搅拌、高剪切分散和超声分散制备了MWCNT/PES-环氧树脂复合材料,测试了其拉伸性能及断裂韧性,用SEM观察了MWCNT在树脂中的分散状态以及拉伸试样的断口形貌。结果表明:MWCNT的加入能够提高PES-环氧树脂体系的综合力学性能,且当MWCNT含量为0.7wt%时,树脂体系的综合力学性能最好;低PES含量下,小于1.0wt%的MWCNT的加入使材料力学性能超过用20.0wt%PES改性的环氧树脂;PES与MWCNT对环氧树脂具有协同增韧作用。  相似文献   

12.
Polyarylene ether nitriles (PEN)/multi-walled carbon nanotube (MWNT) composites have been successfully fabricated via PEN solution mixing MWNT and then solution-casting. The cast nanocomposite films were characterized by SEM, thermal properties and mechanical properties. The Young's modulus of PEN/MWNT composites was greatly increased with the increase of MWNT concentration. The crystalline behaviors of nanocomposites increased with the increase of MWNT concentration. Thermogravimetric analysis (TGA) measurement showed that MWNT could stabilize PEN when its weight content was greater than 2.0%, and a high char yield in N2 could be obtained for PEN/MWNT composite at 600 °C.  相似文献   

13.
Novel polypyrrole nanotubes/multi-walled carbon nanotubes (PPyNTs/MWCNTs) composites have been successfully synthesized via in situ chemical oxidation polymerization with methyl orange as soft template. Scanning electron microscopy and transmission electron microscopy images revealed that MWCNTs intertwined with the PPyNTs and PPyNTs/MWCNTs composites formed in water–ethanol solution. The obtained composites exhibited perfect electrochemical characteristic compared with PPyNTs and MWCNTs owing to the synergetic effect and the specific capacitance of the composites was strongly influenced by the mass ratio of pyrrole to MWCNTs. According to the galvanostatic charge/discharge analysis, the specific capacitance of PPyNTs/MWCNTs composites is up to 352 F g?1 at a current density of 0.2 A g?1 in 1 M KCl solution, much higher than that of the PPyNTs (178 F g?1) and MWCNT (46 F g?1), suggesting its potential application in supercapacitors.  相似文献   

14.
《Materials Letters》2007,61(8-9):1725-1728
2024Al matrix composite reinforced with 1 wt.% carbon nanotubes (CNTs) was fabricated by cold isostatic pressing, followed hot extrusion techniques. The microstructure characteristics and the distribution of carbon nanotubes in the aluminum matrix were investigated. The mechanical properties of the composite were measured at room temperature. Experimental results showed that CNTs were distributed homogeneously in the composite, and the interfaces of Al–CNTs bonded well. The grain size of the matrix was as fine as 200 nm, and with a small amount of CNTs additions, the elastic modulus and the tensile strength were enhanced markedly over those of the 2024Al matrix fabricated under the same process. The reasons for the increments could be due to the extraordinary mechanical properties of CNTs, the bridging and pulling out role of CNTs in the Al matrix composite.  相似文献   

15.
16.
Ceramic matrix composites containing carbon nanotubes   总被引:1,自引:0,他引:1  
Due to the remarkable physical and mechanical properties of individual, perfect carbon nanotubes (CNTs), they are considered to be one of the most promising new reinforcements for structural composites. Their impressive electrical and thermal properties also suggest opportunities for multifunctional applications. In the context of inorganic matrix composites, researchers have particularly focussed on CNTs as toughening elements to overcome the intrinsic brittleness of the ceramic or glass material. Although there are now a number of studies published in the literature, these inorganic systems have received much less attention than CNT/polymer matrix composites. This paper reviews the current status of the research and development of CNT-loaded ceramic matrix composite (CMC) materials. It includes a summary of the key issues related to the optimisation of CNT-based composites, with particular reference to brittle matrices and provides an overview of the processing techniques developed to optimise dispersion quality, interfaces, and density. The properties of the various composite systems are discussed, with an emphasis on toughness; a comprehensive comparative summary is provided, together with a discussion of the possible toughening mechanism that may operate. Last, a range of potential applications are discussed, concluding with a discussion of the scope for future developments in the field.  相似文献   

17.
An electrodeposition procedure is performed in the Ni-plating bath containing multi-walled carbon nanotubes (MWNTs). The effects of MWNTs on the electrodeposits and process of Ni deposition are investigated by scanning electron microscopy, X-ray diffraction and electrochemical methods. The results show that there is an optimum concentration of MWNTs, at which the surface of the cathode can be uniformly and completely covered by MWNTs and thus Ni can be uniformly deposited on the MWNTs to form the MWNTs coated with a uniform Ni layer. The introduction of MWNTs in the Ni-plating bath increases the cathodic polarization of Ni deposition due to the two aspects as follows: The addition of MWNTs enhances the charge transfer for the reduction of Ni and also supplies a large active surface area for a great deal of nucleation of Ni, consequently results in an increase of concentration polarization. The deposition of Ni on the MWNTs requires the higher activation energy than that on the Cu. The MWNTs adsorbed on the cathode also induce Ni to deposit as smaller grains due to a large increase of nucleation sites of Ni. Therefore, more uniform and compact coating in appearance than Ni coating formed in the plating bath without MWNTs can be obtained.  相似文献   

18.
The effect of multi-walled carbon nanotubes (MWNTs), both amino-functionalized (f-MWNTs) and unfunctionalized (p-MWNTs) on the curing behavior of epoxy resin (EP) cured with triethanolamine (TEA), was investigated using differential scanning calorimetry (DSC). Because the triethylenetetramine (TETA) grafted on the f-MWNTs could act as curing agent and the produced tertiary amine as negative ionic catalysts of curing reaction of EP, so the activation energy of the EP/TEA system was decreased by the addition of f-MWNTs. Viscosity played a key role in the curing behavior of the EP/TEA/MWNTs system, for high viscosity of the EP/TEA/MWNTs system could hinder the motion of the functional groups. The curing heat in EP/TEA/f-MWNTs (weight ratio 1/0.1/0.01) system was higher than the neat EP/TEA (weight ratio 1/0.1) system, while the curing heat in EP/TEA/p-MWNTs (weight ratio 1/0.1/0.01) was lower than the neat system. When the content of f-MWNTs was increased to 2 phr (weight ratio of 1/0.1/0.02), the curing heat became lower than that of the neat EP/TEA system, which was the result of the higher viscosity of the EP/f-MWNTs/TEA system. Since the curing heat indicated the curing degree of the system generally, the addition of the f-MWNTs was thought to increase the curing degree of the epoxy matrix at a relatively low content.  相似文献   

19.
采用三种不同官能度的硅烷偶联剂(甲基三乙氧基硅烷(MTES)、二甲基二乙氧基硅烷(DMDES)及三甲基乙氧基硅烷(TMES))在有水条件下对多壁碳纳米管(MWCNTs)进行表面改性,通过FTIR、XPS、TG及SEM表征了MWCNTs改性前和改性后的化学结构。采用机械共混法制备了MWCNTs/硅橡胶(SR)复合材料。SEM结果表明,将不同质量分数的MWCNTs、MWCNTs-MTES、MWCNTs-DMDES和MWCNTs-TMES填充到SR中,硅烷改性可以降低MWCNTs间的相互作用,改善其在SR中的分散性。拉伸试验结果表明,改性MWCNTs与SR之间的相互作用增强,二者的相容性得到改善。当改性MWCNTs含量≤2wt%时,MWCNTs/SR复合材料的弹性模量无明显变化。介电性能测试结果表明,当MWCNTs-MTES质量分数为2wt% 时,MWCNTs-MTES/SR复合材料在104 Hz时介电常数达到5.02,较纯硅橡胶提高了57%,而介电损耗仍低于0.01,保持在极低水平。   相似文献   

20.
Aluminum matrix composites reinforced by different contents of multi-walled carbon nanotubes (MWCNTs) were fabricated by friction stir processing (FSP). The microstructure of nano-composites and the interface between aluminum matrix and MWCNTs were examined using optical microscopy (OM) and transmission electron microscopy (TEM). It was indicated that MWCNTs were well dispersed in the aluminum matrix throughout the FSP. Tensile tests and microhardness measurement showed that, with the increase of MWCNT content, the tensile strength and microhardness of MWCNTs/Al composites gradually increased, but on the contrary, the elongation decreased. The maximum ultimate tensile strength reached up to 190.2 MPa when 6 vol.% MWCNTs were added, and this value was two times more of that of aluminum matrix. Appearances and fracture surface micrographs of failed composite samples indicated that the composites become more and more brittle with the increase of the MWCNT content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号