首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microchannel cold plates enjoy increasing interest in liquid cooling of high-performance computing systems. Fast and reliable design tools are required to comply with the fluid mechanics and thermal specifications of such complex devices. In this paper, a methodology accounting for the local as well as the device length scales of the involved physics is introduced and applied to determine the performance of a microchannel cooler. A unit cell of the heat transfer microchannel system is modeled and implemented in conjugate CFD simulations. The fluidic and thermal characteristics of three different cold plate mesh designs are evaluated. Periodic boundary conditions and an iteration procedure are used to reach developed flow and thermal conditions. Subsequently, two network-like models are introduced to predict the overall pressure drop and thermal resistance of the device based on the results of the unit cell evaluations. Finally, the performance figures from the model predictions are compared to experimental data. We illustrate the cooling potential for different channel mesh porosities and compare it to the required pumping power. The agreement between simulations and experiments is within 2%. It was found that for a typical flow rate of 250 ml/min, the thermal resistance of the finest microchannel network examined is reduced by 7% and the heat transfer coefficient is increased by 25% compared to the coarsest channel network. On the other hand, an increase in pressure drop by 100% in the case of densest channel network was found.  相似文献   

2.
This paper presents a numerical investigation of a single-phase manifold microchannel cooler (MMC) heat exchanger demonstrating a reduction in fluid pressure drop while improving chip-temperature uniformity. This modeling work includes the entire manifold length with multiple microchannels, whereas previous models have only focused on individual microchannels, ignoring complex manifold effects. Computational Fluid Dynamic (CFD) models were used to identify the impact of varying both the manifold and microchannel fin and channel dimensions, and a sensitivity analysis was performed with respect to system pressure drop, rise in device temperature, and thermal uniformity. This modeling work demonstrated both large velocity gradients between microchannels, as well as fluidic swirling in the microchannels that significantly improved the heat transfer coefficient. These results are absent from unit-cell type models. The results of the full MMC model showed significantly improved chip-temperature uniformity when large (approximately 10X) differences in velocity occurred between microchannels. The simulations also showed that, for equivalent thermal performance, the MMC design resulted in a 97% reduction in system pressure drop when compared to an equivalent straight microchannel cooler. Finally, the numerical pressure drop results were compared to a simpler, one-dimensional approximation based on the Hagen–Poiseuille equation. While under-predicting total pressure drop, the analytical equation does capture prevailing trends of the effects of channel dimensions on the pressure drop and can be used for rapid evaluation of numerous tradeoffs from a system perspective.  相似文献   

3.
A honeycomb porous microchannel cooling system for electronics cooling was proposed in this article. The design, fabrication, and test system configuration of the microchannel heat sink were summarized. Preliminary experimental investigation was conducted to understand the characteristics of heat transfer and cooling performance under steady single-phase flow. In the experiments, a brass microchannel heat sink was attached to a test heater with 8 cm2 area. The experimental results show that the cooling system is able to remove 18.2 W/cm2 of heat flux under 2.4 W pumping power, while the junction wall temperature is 48.3°C at the room temperature of 26°C. Extensive experiments in various operation conditions and parameters for the present cooling system were also conducted. The experimental results show that the present cooling system is able to perform heat dissipation well.  相似文献   

4.
We demonstrated a new silicon microchannel heat sink, composing of parallel longitudinal microchannels and several transverse microchannels, which separate the whole flow length into several independent zones, in which the thermal boundary layer is in developing. The redeveloping flow is repeated for all of the independent zones thus the overall heat transfer is greatly enhanced. Meanwhile, the pressure drops are decreased compared with the conventional microchannel heat sink. Both benefits of enhanced heat transfer and decreased pressure drop ensure the possibility to use “larger” hydraulic diameter of the microchannels so that less pumping power is needed, which are attractive for high heat flux chip cooling. The above idea fulfilled in microscale is verified by a set of experiments. The local chip temperature and Nusselt numbers are obtained using a high resolution Infrared Radiator Imaging system. Preliminary explanation is given on the decreased pressure drop while enhancing heat transfer. The dimensionless control parameter that guides the new heat sink design and the prospective of the new heat sink are discussed.  相似文献   

5.
Leakage losses and ever-increasing power dissipation in the microprocessor are causing significant thermal, mechanical, and reliability problems. Conventional cooling methods are reaching their practical limits, and new methods of lowering the operating temperature of microprocessors are being explored. Microfluidics-based cooling schemes are one approach being considered. The implementation of microchannels for forced convection at the chip level shows much promise, as the effective heat transfer surface area and attainable heat flux are very favorable. A major design limitation to such an implementation is the pressure developed within such micro-flows and the stresses that could result. In this study, multiple discrete microchannel heat sink configurations are analyzed computationally and compared in a cooling capability sense, while total pressure drop across the flows is carefully considered. A single cooling channel over an energy source is split into two smaller channels, and so on, while total pressure drop is maintained constant, and specified such that all flows remain in the laminar regime. It is shown that for the configurations analyzed, there exists multiple-dependence optimum cooling configurations. In addition, it is shown that a slimmer design may be implemented with a relatively small effect on cooling capability. Furthermore, cooling capability dependence on total pressure drop of the flows is shown to be minimal for high-performing microchannel configurations.  相似文献   

6.
Boiling in microchannels shows great potential for cooling systems and compact heat removal applications. However for confidence in this cooling technique, it is essential that any excursions from typical flow boiling are understood and predicted. Confined bubble growth can cause pressure fluctuations which interfere with bubble nucleation and growth and can also lead to flow reversal and instances of temperature excursions. Boiling experiments are performed in a single rectangular microchannel of hydraulic diameter 771 μm, using n-Pentane as the working fluid. A heating technique was incorporated on the exterior walls of the microchannel; a transparent, metallic, conductive deposit, which allows simultaneous uniform heating and visualisation to be achieved. In conjunction with obtaining high-speed imaging, an infrared camera is used to record the temperature profile at the microchannel wall, and sensitive pressure sensors are used to record the pressure drop across the microchannel over time. During flow boiling in the microchannel periodic and non-periodic fluctuations in both the channel pressure drop and channel temperature profile over time are apparent. In this paper we provide a full analysis of the temperature measurements and pressure data obtained during the growth of a vapour bubble in the microchannel. An augmentation of the heat transfer coefficient of over 216% has been achieved during periodic two-phase flow boiling in the microchannel. However overpressure (over 410% increase) in the microchannel occurs at corresponding instances to the heat transfer enhancement. The two time steps during the periodic bubble dynamics, namely the bubble expansion time period and the waiting time period in-between the bubble expansion fluctuations, are also investigated and modelled. It was determined that both the bubble dynamics and the channel wall heating time period are responsible for the pressure and temperature fluctuation time periods observed.  相似文献   

7.
In this work, single layered (SL) and double layered (DL) flexible microchannel heat sinks are analyzed. The deformation of the supporting seals is related to the average internal pressure by theory of elasticity. It is found that sufficient cooling can be achieved using SL flexible microchannel heat sinks at lower pressure drop values for softer seals. Double layered flexible microchannel heat sinks provide higher rate of cooling over SL flexible microchannel heat sinks at the lower range of pressure drops. Single layered flexible microchannel heat sinks are preferred for large pressure drop applications while DL flexible microchannel heat sinks are preferred for applications involving low pressure drops.  相似文献   

8.
Active and passive cooling are the two possible methods for removing heat. An active cooling system is the one that involves the use of energy as opposed to passive cooling that uses no energy. Passive cooling methods are cost effective and more reliable than active cooling due to the absence of moving parts. Microchannel heat sink is one of high-tech devices that have widely considered passive cooling methods especially for electronics cooling. In this paper, the use of passive cooling methods in microchannel heat sink is comprehensively discussed. This paper also present the effects of some important parameters such as the type of channel types, surface roughness, fluid additives, and Reynolds number on the rate of heat transfer in microchannel heat sink. Finally, the conclusions and important summaries were presented according to the data collected.  相似文献   

9.
This paper examines the effectiveness of using a pulsating cross-flow fluid jet for thermal enhancement in a microchannel. The proposed technique uses a novel flow pulsing mechanism termed “synthetic jet” that injects into the microchannel a high-frequency fluid jet with a zero-net-mass flow through the jet orifice. The microchannel flow interacted by the pulsed jet is modelled as a two-dimensional finite volume simulation with unsteady Reynolds-averaged Navier–Stokes equations while using the Shear-Stress-Transport (SST) kω turbulence model to account for fluid turbulence. For a range of conditions, the special characteristics of this periodically interrupted flow are identified while predicting the associated convective heat transfer rates. Results indicate that the pulsating jet leads to outstanding thermal performance in the microchannel increasing its heat dissipation by about 4.3 times compared to a channel without jet interaction within the tested parametric range. The degree of enhancement is first seen to grow gently and then rather rapidly beyond a certain flow condition to reach a steady value. The proposed strategy has the unique intrinsic ability to generate outstanding degree of thermal enhancement in a microchannel without increasing its flow pressure drop. The technique is envisaged to have application potential in miniature electronic devices where localised cooling is desired over a base heat dissipation load.  相似文献   

10.
This paper presents a numerical study on laminar forced convection of water in offset strip-fin microchannels network heat sinks for microelectronic cooling. A 3-dimensional mathematical model, consisting of N–S equations and energy conservation equation, with the conjugate heat transfer between the heat sink base and liquid coolant taken into consideration is solved numerically. The heat transfer and fluid flow characteristics in offset strip-fin microchannels heat sinks are analyzed and the heat transfer enhancement mechanism is discussed. Effects of geometric size of strip-fin on the heat sink performance are investigated. It is found that there is an optimal strip-fin size to minimize the pressure drop or pumping power on the constraint condition of maximum wall temperature, and this optimal size depends on the input heat flux and the maximum wall temperature. The results of this paper are helpful to the design and optimization of offset strip-fin microchannel heat sinks for microelectronic cooling.  相似文献   

11.
The paper is focused on the investigation of fluid flow and heat transfer characteristics in a microchannel heat sink with offset fan-shaped reentrant cavities in sidewall. In contrast to the new microchannel heat sink, the corresponding conventional rectangular microchannel heat sink is chosen. The computational fluid dynamics is used to simulate the flow and heat transfer in the heat sinks. The steady, laminar flow and heat transfer equations are solved in a finite-volume method. The SIMPLEX method is used for the computations. The effects of flow rate and heat flux on pressure drop and heat transfer are presented. The results indicate that the microchannel heat sink with offset fan-shaped reentrant cavities in sidewall improved heat transfer performance with an acceptable pressure drop. The fluid flow and heat transfer mechanism of the new microchannel heat sink can attribute to the interaction of the increased heat transfer surface area, the redeveloping of the hydraulic and thermal boundary layers, the jet and throttling effects and the slipping over the reentrant cavities. The increased heat transfer surface area and the periodic thermal developing flow are responsible for the significant heat transfer enhancement. The jet and throttling effects enhance heat transfer, simultaneously increasing pressure drop. The slipping over the reentrant cavities reduces pressure drop, but drastically decreases heat transfer.  相似文献   

12.
Irreversibility analyses of both evaporator and gas cooler of a CO2 based transcritical heat pump for combined cooling and heating, employing water as the secondary fluid, have been reported. The analysis includes both operational and material associated irreversibilities. Optimization of heat exchanger tube diameter and length and effect of design parameters on overall system performance is also presented. Results clearly show that higher heat transfer coefficient can be achieved by reducing the diameter only to a limited extent due to rapid increase in pressure drop. The minimum possible diameter depends on mass flow rate (capacity) and division of flow path. The right combination of optimum diameter and length depends on the number of passes, capacity and operating parameters. It is noteworthy that due to higher pressure drop occurring in the evaporator compared to the gas cooler, zero temperature approach is attained before the optimum length is reached in case of the evaporator. Presented results are expected to help choose effective heat exchanger size in terms of diameter, length and number of passes.  相似文献   

13.
Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.  相似文献   

14.
With increasing heat fluxes caused by electronic components, dimples have attracted wide attention by researchers and have been applied to microchannel heat sink in modern advanced cooling technologies. In this work, the combination of dimples, impinging jets and microchannel heat sink was proposed to improve the heat transfer performance on a cooling surface with a constant heat flux 500 W/cm~2. A mathematical model was advanced for numerically analyzing the fluid flow and heat transfer characteristics of a microchannel heat sink with impinging jets and dimples(MHSIJD), and the velocity distribution, pressure drop, and thermal performance of MHSIJD were analyzed by varying the radii of dimples. The results showed that the combination of dimples and MHSIJ can achieve excellent heat transfer performance; for the MHSIJD model in this work, the maximum and average temperatures can be as low as 320 K and 305 K, respectively when mass flow rate is 30 g/s; when dimple radius is larger than 0.195 mm, both the heat transfer coefficient and the overall performance h/ΔP of MHSIJD are higher than those of MHSIJ.  相似文献   

15.
利用冷却工质的相变蒸发带走大量热量的喷雾相变冷却技术成为大功率电子元件散热需求的最佳途径.建立了双喷嘴阵列氨喷雾相变冷却实验系统,研究了饱和蒸发压力以及进口流量对氨喷雾相变冷却传热特性的影响规律.实验结果表明:在氨喷雾相变冷却过程中,维持较高的饱和蒸发压力有利于传热系数提高,过热度降低;流量对传热特性影响较大,低流量时...  相似文献   

16.
The present study investigates heat transfer and pressure drop in flows through ribbed channel for application to turbine blade cooling. The experiments are conducted for different cross-sections, for Reynolds number from 20 to 60 × 103. Local heat transfer coefficients are obtained using a transient thermochromic liquid crystal (TLC) technique. Detailed knowledge of the local heat transfer coefficient is essential to analyze thermal stresses in turbine components, while the combined effect of heat transfer and pressure drop should be taken into account for a proper cooling system design. As a compromise has always to be found, a new design criteria to choose the most appropriate solution for typical turbomachinery parameters is inferred and shown. Entrance effects for ribbed channels are also studied, as the common hypothesis of fully developed flow is rarely satisfied in real engine geometries; relevant results are revealed.  相似文献   

17.
《Energy》2001,26(10):931-948
This paper presents the development and verification of a heat exchanger model for evaluating the thermal performance of an evaporator for a CO2 mobile air-conditioning system. The model has been developed, on the basis of the finite volume method, with emphasis placed on the air-side heat and mass transfer processes. The governing equations are derived from mass and energy balances using the newly developed air-side heat transfer and friction loss correlations for microchannel heat exchangers under both dry and wet conditions. The calculated air-side heat transfer and pressure drop data are in good agreement with measured data. However, the refrigerant-side pressure drop estimation for microchannel tubes usually underestimates the measured value. The simulation results and importance of selecting appropriate heat transfer and pressure drop correlations for the microchannel heat exchanger are addressed.  相似文献   

18.
The combination of a microchannel heat sink with impinging jets and dimples(MHSIJD) can effectively improve the flow and heat transfer performance on the cooling surface of electronic devices with very high heat fluxes. Based on the previous work by analysing the effect of dimple radius on the overall performance of MHSIJD, the effects of dimple height and arrangement were numerically analysed. The velocity distribution, pressure drop, and thermal performance of MHSIJD under various dimple heights and arrangements were presented. The results showed that: MHSIJD with higher dimples had better overall performance with dimple radius being fixed; creating a mismatch between the impinging hole and dimple can solve the issue caused by the drift phenomenon; the mismatch between the impinging hole and dimple did not exhibit better overall performance than a well-matched design.  相似文献   

19.
Woorim Lee  Gihun Son 《传热工程》2014,35(5):501-507
Flow boiling in a microchannel without or with surface modifications, such as fins, grooves, and cavities, has received significant attention as an effective cooling method for high-power microelectronic devices. However, a general predictive approach for the boiling process has not yet been developed because of its complexity involving the bubble dynamics coupled with boiling heat transfer in a microscale channel. In this study, direct numerical simulations for flow boiling in a surface-modified microchannel are performed by solving the conservation equations of mass, momentum, and energy in the liquid and vapor phases. The bubble surfaces are determined by a sharp-interface level-set method, which is modified to include the effect of phase change at the liquid–vapor interface and to treat the no-slip and contact-angle conditions on immersed solid surface of microstructures. This computation demonstrates that the surface-modified microchannel enhances boiling heat transfer significantly compared to a plain microchannel. The effects of various surface modifications on the bubble growth and heat transfer are investigated to find better conditions for boiling enhancement.  相似文献   

20.
Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using micro and mini channels is an attractive alternative to large and bulky aluminum or copper heat sinks. These channels can be integrated directly into a chip or a heat spreader, and cooling can be further enhanced using nanofluids (liquid solutions with dispersed nanometer-sized particles) due to their enhanced heat transfer effects reported in literature. The goals of this study are to evaluate heat transfer improvement of a nanofluid heat sink with developing laminar flow forced convection, taking into account the pumping power penalty. The phrase heat transfer enhancement ratio (HTR) is used to denote the ratio of average heat transfer coefficient of nanofluid to water at the same pumping power. The proposed model uses semi-empirical correlations to calculate nanofluid thermophysical properties. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to identify important design variables (Reynolds number, volume fraction and particle size) related to thermal and flow characteristics of the microchannel heat sink with nanofluids. Statistical analysis of the model showed that the volume fraction is the most significant factor impacting the HTR, followed by the particle diameter. The impact of the Reynolds number and other interaction terms is relatively weak. The HTR is maximized at smallest possible particle diameter (since smaller particles improve heat transfer but do not impact pumping power). Then, for a given Reynolds number, an optimal value of volume fraction can be obtained to maximize HTR. The overall aim is to present results that would be useful for understanding and optimal design of microchannel heat sinks with nanofluid flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号