首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Materialia》2008,56(15):3990-4001
Foaming of aluminium is investigated under oxidizing and non-oxidizing gas atmospheres. Foams were prepared by mixing and pressing Al99.95 and TiH2 powders and foaming the pressed material in a gas-tight X-ray transparent furnace while following the process by X-ray radioscopy. The structure and distribution of the oxides present in the powders, precursors and foams were studied by light microscopy, scanning and transmission electron microscopy. Sequential focused ion beam slicing was used to obtain tomographic images of oxide and micropore distributions within the individual cell walls of the foams. A complex hierarchical structure of the oxides is found. Oxides reside in the bulk of the cell walls without a pronounced segregation to the gas/metal interfaces. The presence of air retards foaming due to oxidation of the outer surface.  相似文献   

2.
《Acta Materialia》2000,48(9):2349-2362
Aluminium foams were produced by applying the powder compact melting method, i.e. by mixing metal powders and powdered gas-releasing blowing agents and pressing them to a foamable precursor material after this. The resulting precursor was then foamed by heating it up to above its melting point inside an “expandometer”, which allowed for the volume and temperature to be measured throughout the entire process. The present studies comprise the effects of the aluminium alloy composition (AlSi7 and 6061), some of the pressing parameters of the foamable precursor material, the foaming temperature and the heating rate during foaming on the expansion behaviour of the foam. Moreover, the morphological and microstructural evolution of metal foams is investigated.  相似文献   

3.
In this study an attempt was carried out to determine the effect of production temperature on the mechanical properties and energy absorption behavior of closed-cell A356 alloy foams under uniaxial compression test. For this purpose, three different A356 alloy closed-cell foams were synthesized at three different casting temperatures, 650 °C, 675 °C and 700 °C by adding the same amounts of granulated calcium as thickening and TiH2 as blowing agent. The samples were characterized by SEM to study the pore morphology at different foaming temperatures. Compression tests of the A356 foams were carried out to assess their mechanical properties and energy absorption behavior. The results indicated that increasing the foaming temperature from 650 °C to 675 °C and 700 °C reduces the relative density of closed cell A356 alloys by 18.3% and 38% respectively and consequently affects the compressive strength and energy absorption of cellular structures by changing them from equiaxed polyhedral closed cells to distorted cells. Also at 700 °C foaming temperature, growth of micro-pores and coalescence with other surrounding pores leads to several big voids.  相似文献   

4.
在熔体发泡法工艺中,发泡剂的分解速度和浸润性直接影响泡沫金属的孔结构和孔隙率。为减缓泡沫镁发泡剂CaCO3的发泡速度并提高与镁熔体的浸润性,采用非均匀形核法,以硅酸钠为原料,盐酸为酸化剂,在CaCO3表面包覆SiO2钝化膜。采用TGA-DTA、XRD、SEM等方法对包覆后CaCO3的热稳定性和包覆层的微观结构进行分析。结果表明:包覆后的CaCO3分解温度提高;包覆层中的SiO2为无定形态;在CaCO3颗粒表面形成网络状结构。对比实验表明:包覆后的CaCO3发泡速度平稳。同时,采用合金化阻燃工艺在无气体保护条件下制备出较大尺寸的泡沫镁试样,并且试样孔径细小,孔结构均匀,孔隙率在60%-70%。  相似文献   

5.
An idealized nucleation and growth based model was used to predict bubble size distribution in liquid aluminum foam, based on the assumption that the entire quantity of hydrogen added as TiH2 was retained in solution initially. The model considered simultaneous nucleation and growth of bubbles in the first stage, and pure bubble growth in the second stage. Bubble nucleation was found to be feasible only heterogeneously within narrow crevices in non wetting substrates. Effects of initial gas supersaturation on total expansion, final bubble size distribution, total number of bubbles, and average bubble size were investigated. Model predictions of foam characteristics were compared with experimental observations on foams prepared by dissociating TiH2 foaming agent in liquid aluminium, and good match between the two was found with respect to average cell size and total number of bubbles. Differences between model predictions and experimental observations, especially in the nature of bubble size distribution, and limitations of the model were explained.  相似文献   

6.
《Acta Materialia》2001,49(5):849-859
Ultralight metal foams can be produced by gas expansion in either the molten or solid state by the release of H2 during the decomposition of TiH2 particles. An alternative approach uses a powder metallurgical route to deliberately trap a low solubility gas within interparticle spaces during consolidation. This is subsequently used to plastically expand the voided solid during a post-consolidation heat treatment. Porosities of about 40% have been reported. However this is only about half that of melt-foamed materials and there is much interest in designing processes that increase it. Micromechanical models for the plastic expansion process are developed and used to identify the practical porosity limits in this entrapped gas expansion approach. It is shown that the porosity is limited by the reduction in pore pressure as voids expand, and ultimately by the loss of gas accompanying void coalescence. Increasing the initial pore pressure is shown to also lead to the formation of face sheet delaminations in stiffened, porous core sandwich panels. Its dependence on the process methodology is considered. Achievable porosities during solid state foaming are shown to be limited to less than 50%; much less than that of metals foamed in the liquid state. A simple extension of the analysis to semi-solid state expansion shows that much higher porosities could be achievable under these conditions because void coalescence can be avoided.  相似文献   

7.
Manufacturing routes for metallic foams   总被引:2,自引:0,他引:2  
The study of metallic foams has become attractive to researchers interested in both scientific and industrial applications. In this paper, various methods for making such foams are presented and discussed. Some techniques start from specially prepared molten metals with adjusted viscosities. Such melts can be foamed by injecting gases or by adding gas-releasing blowing agents which cause the formation of bubbles during their in-situ decomposition. Another method is to prepare supersaturated metal-gas systems under high pressure and initiate bubble formation by pressure and temperature control. Finally, metallic foams can be made by mixing metal powders with a blowing agent, compacting the mix, and then foaming the compact by melting. The various foaming processes, the foam-stabilizing mechanisms, and some known problems with the various methods are addressed in this article. In addition, some possible applications for metallic foams are presented. Editor’s Note: A hypertext-enhanced version of this article can be found at www.tms.org/pubs/journals/JOM/0012/Banhart-0012.html For more information, contact John Banhart, Fraunhofer-Institute for Manufacturing and Advanced Materials, Wiener Str. 12, 28359 Bremen, Germany; e-mail banhart@telda.net.  相似文献   

8.
Al-2 wt.% Mg-Re foams with relatively small pore size (∼1 mm) were fabricated by the melt foaming method with the addition of titanium hydride as a blowing agent. The corrosion resistance properties of the Al-Mg-Re foams have been studied and the results compared with those of Al foam and Al-5 wt.% Cu foam. The results show that in order to get Al-Mg-Re alloy foams with good pore structures, Ca and Mg should be added to the pure Al melt before adding the blowing agent; the corrosion resistance properties of Al-Mg-Re foams are better than those of Al foam and Al-Cu foams.  相似文献   

9.
Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3 foaming agent and applying the powder compact melting process. To this end, the aluminum and CaCO3 powder mixtures were cold compacted into dense cylindrical precursors for foaming at specific temperatures under air atmosphere. The effects of several parameters including precursor compaction pressure, foaming agent content as well as temperature and time of the foaming process on the cell microstructure, linear expansion, relative density and compressive properties were investigated. A uniform distribution of cells with sizes less than 100 μm, which form semi open-cell structures with relative densities in the range of 55.4%–84.4%, was obtained. The elevation of compaction pressure between 127–318 MPa and blowing agent up to 15% (mass fraction) led to an increase in the linear expansion, compressive strength and densification strain. By varying the foaming temperature from 800 to 1000 °C, all of the investigated parameters increased except compressive strength and relative density. The results indicated the optimal foaming temperature and time as 900 °C and 10–25 min, respectively.  相似文献   

10.
Aluminium foams can be manufactured by two main methods: casting and powder metallurgy. When the latter route is used, a foaming agent (usually TiH2) is mixed with the aluminium or aluminium alloy powders, followed by powder mixture consolidation (usually hot extrusion) into a precursor and finally its foaming treatment. In this research, two calcium carbonate powders were used as foaming agents on an Al–Mg–Si (AA6061) alloy. Their different characteristics (particle size and chemical composition) modified the manufacturing process to achieve the final foam. AA6061 powders were then mixed with 10% calcium carbonate and, after cold isostatic pressing into green cylinders, hot extruded at different temperatures (475–545 °C). The foaming treatment was carried out in a furnace preheated to 750 °C using several heating times. The density changed from 2.03 to 2.10 g/cm3 after cold isostatic pressing to 2.64–2.69 g/cm3 in precursor materials obtained by hot extrusion. Foaming behaviour depends on the carbonate powder as well as the extrusion temperature. Thus, natural carbonate powder (white marble) produces a foam density close to 0.65 g/cm3 after a shorter time than when chemical carbonate is used. The foam structure showed a low degree of aluminium draining, no wall cell cracks and a good fine cell size distribution. Compressive strength of 6.11 MPa and 1.8 kJ/m3 of energy absorption were obtained on AA6061 foams with a density between 0.53 and 0.56 g/cm3.  相似文献   

11.
John Banhart 《Gold bulletin》2008,41(3):251-256
The possibilities to manufacture gold-based foams are explored. Gold powder and various powdered alloying elements are mixed with a small volume fraction of a gas-releasing blowing agent. The blend is compacted to a dense precursor, which is then melted in a further step in order to trigger foam formation. We find that gold-silicon alloys containing 2–3 wt.% of silicon or around 8 wt.% of germanium can be foamed using TiH2 or ZrH2 as a blowing agent. Foams with about 85% porosity are obtained.  相似文献   

12.
Composites of Al-Si-Mg (A356) alloy with silicon carbide particles were synthesized in-house and foamed by melt processing using titanium hydride as foaming agent. The effects of the SiCP size and content, and foaming temperature on the stability and quality of the foam were explored. It was observed that the foam stability depended on the foaming temperature alone but not on the particle size or volume percent within the studied ranges. Specifically, foam stability was poor at 670°C. Among the stable foams obtained at 640°C, cell soundness (absence of/low defects, and collapse) was seen to vary depending on the particle size and content; For example, for finer size, lower particle contents were sufficient to obtain sound cell structure. It is possible to determine a foaming process window based on material and process parameters for good expansion, foam stability, and cell structure.  相似文献   

13.
针对铝合金机座零件的结构和挤压铸造工艺特点,对原超慢速压铸模具的进浇方式、排溢系统、冷却系统进行再设计,使其适用于挤压铸造。利用AnyCasting软件,对修改前后的模具进行模拟分析对比,修改前模拟分析的产品内部缩松缺陷与实际情况一致,修改后的模具通过更改进浇方式,扩大排气槽及溢流槽,使气体在液流充填模具型腔过程中能顺利排出;并增加冷却水路来控制模具温度,保证产品在冷却过程中实现顺序凝固,进而消除产品的内部缩松缺陷。所获得的挤压铸造铝合金支座铸件组织致密,可进行T6热处理,力学性能接近锻件性能。  相似文献   

14.
In the present investigation, an attempt has been made to develop in situ sandwich Fe-based foams using powder forging and rolling. Several metal carbonates are first studied by thermo gravimetric analysis to find out their suitability to be used as foaming agent for iron-based foams. Barium carbonate is found to be the most promising foaming agent among other suitable options studied such as SrCO3, CaCO3, MgCO3, etc. The effects of process parameters such as precursor composition, sintering temperature, foaming temperature and time, and content of foaming agent have been studied. The microstructural characteristics of the sintered precursor have been studied by means of optical and scanning electron microscopy. It was found that a good pore structure can be obtained using 2-3% C in Fe and 3% BaCO3 as foaming agent and by foaming at around 1350 °C for 3-6 min.  相似文献   

15.
A cold repeated forming process of compacts for producing metal foams was developed in order to strongly bond powder particles. In this process, the compact undergoes severe plastic deformation for the strong bonding of particles by repeated backward extrusion and cup compression, and thus the compact largely foams owing to the accumulation of gas released from blowing agents inside the compact during heating. The cold repeated forming process without heating is much simpler than that for the conventional hot extrusion process. The relative density of the foam was decreased by adding silicon powder to the compact, and an aluminium foam having a relative density of 0.27 was obtained using two repeats of backward extrusion and cup compression, 1.5 mass% titanium hydride powder and 4 mass% silicon powder. In addition, a one-piece foam was successively produced from the bonding of two compacts during the foaming in a die. It was found that the cold repeated forming of compacts is effective for the production of metal foams.  相似文献   

16.
The influence of cooling rate on the microstructure of Al0.6CoCrFeNi high entropy alloy (HEA) powders was investigated. The spherical HEA powders (D50≈78.65 μm) were prepared by high pressure gas atomization. The different cooling rates were achieved by adjusting the powder diameter. Based on the solidification model, the relationship between the cooling rate and the powder diameter was developed. The FCC phase gradually disappears as particle size decreases. Further analysis reveals that the phase structure gradually changes from FCC+BCC dual-phase to a single BCC phase with the increase of the cooling rate. The microstructure evolves from planar crystal to equiaxed grain with the cooling rate increasing from 3.19×104 to 1.11×106 K/s.  相似文献   

17.
本研究利用气雾化技术制备球形TC4合金粉末,作者利用SEM、同步辐射CT扫描-三维重建等分析手段对异常颗粒粉体以及不同粒径的TC4合金粉末表面和内部的孔缺陷进行了表征。实验结果表明,本研究制备的TC4合金粉末随着粉末粒径减小,粉体表面由凸凹不平的冷凝收缩痕迹渐变为光滑表面,粉体内部的孔隙逐渐减少,且孔隙尺寸也随之减小;经分析,由于雾化过程中凝固与球化时间的差异及飞行轨迹的不同等原因导致了包裹式、连体式、椭球形、卫星粉等异常粉末颗粒的生成;同步辐射CT扫描-三维重建表明,粉末内部的孔隙率和孔隙尺寸随着粉末粒度的增大而增大;作者认为通过调整雾化工艺,使金属熔滴在未开始冷却凝固前彻底雾化破碎,从而能有效解决粉末内部孔隙缺陷的问题。  相似文献   

18.
Closed-cell AlSi9Mg foams and SiCp/AlSi9Mg composite foams with different SiCp volume fractions were prepared successfully by means of direct foaming of melt using CaCO3 blowing agent in this paper. The compressive behaviors of these foams were studied. In comparison with the compressive stress–strain curve of AlSi9Mg foams that of SiCp/AlSi9Mg composite foams is not smooth and exhibits some serrations. At the same relative density of composite foams, the yield stress and collapse stress of the composite foams increase with increasing SiCp volume fraction. The relationship of yield stress, relative density and SiCp volume fraction of SiCp/AlSi9Mg composite foams with a given particle size was obtained.  相似文献   

19.
A powder metallurgical technology of low temperature and pressureless is used to fabricate a W-20wt.%Ti alloy using milled TiH2 powders and micro-sized W powders. The microstructure of the milled TiH2 powders and the bulk W–Ti alloy were studied. It is indicated that TiH2 nanoparticles with the size of 8 to 15 nm were obtained after milling for 48 h and the decomposition temperature decreased from 520.2 °C to 395.5 °C. The W-20wt.%Ti alloy prepared at 1200 °C for 80 min had a relative density of 97.8% which was composed of α-Ti, W and β(W/Ti) solid solution. A preparation mechanism of the W–Ti alloy is also proposed based on the experimental results.  相似文献   

20.
The effect of the SiC reinforcing component (5 – 15%) and the TiH2 expanding agent (1 – 4%) on the structure of the pore space of sheets from aluminum alloy 01204 (the Al – Mg – Si system) fabricated by the method of powder metallurgy is studied. The volume fraction of pores and their specific surface in the process of heating (foaming) of the sheets are evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号