首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
碳纳米管/丁苯橡胶复合材料的电学性能   总被引:4,自引:1,他引:3       下载免费PDF全文
采用喷雾干燥法可制备不同配比的碳纳米管(Carbon nanotubes,CNTs)/粉末丁苯橡胶复合材料,观察CNTs在橡胶基体中的分散情况,检测复合材料的导电性能及介电性能,并进行了简要的理论分析。结果表明:CNTs在橡胶基体中获得了充分均匀的分散,有利于CNTs改性补强作用的发挥。与纯胶样品及填充炭黑(Carbon black,CB)样品相比, 填充CNTs样品在8~18GHz下具有较高的介电常数及低介电损耗。随着CNTs加入量的增加,CNTs/粉末丁苯橡胶复合材料的电导率逐渐升高,当CNTs加入量为60phr(per hundred rubber)时,与纯胶样品及添加60phr CB样品相比,电导率提高近10个数量级;复合材料内部导电同时存在隧道导电机制和渗逾导电机制。采用喷雾干燥法制备的CNTs/粉末丁苯橡胶复合材料,将是一种综合性能良好的新型纳米复合材料,有望在抗静电橡胶、电磁屏蔽及介电材料等领域获得应用。   相似文献   

2.
Polyaniline (PANI) nanofibers grafted reduced graphene oxide (PANI–RGO) is prepared using the “grafting-from” strategy and then is incorporated into polypropylene (PP) matrix by way of the master batch-based melt mixing method. Grafted PANI nanofibers can improve the dispersion and electrical conductivity of reduced graphene oxide (RGO). The electrical conductivity of the modified RGO and its composites is not impaired by the grafted polymer, due to the conductive characteristics of PANI. The barrier action of PANI–RGO can greatly inhibit the release of flammable pyrolysis products of PP. PANI–RGO exhibits a marked flame retardancy effect on PP. The smoke release of the composites is slightly retarded. Transmission electron microscopy image and Raman spectrum of the char residue for PANI–RGO based composite indicate the formation of carbon nanofibers during combustion. The in situ formed carbon nanofibers on graphene nanosheets can enhance barrier performance against heat and mass transfer, resulting in enhanced flame retardancy.  相似文献   

3.
Highly filled conductive fillers (>60 vol%) for conductive polymer composites (CPCs) cause the degradation of rheological and mechanical properties. This study investigated the rheological properties of highly filled metal powder (SS316L) in a polymer matrix composite combined with carbon nanotubes (CNTs) and Graphite (G). The effects of filler concentrations and chemical functionalization on the mechanical and electrical properties of the resulting CPC were determined. Feedstocks with different concentrations were injection molded, and the molded specimens were subjected to tests of tensile strength, three-point bending, hardness, and three-point probe electrical conductivity. The feedstock of CNTs/G/SS316L can be injection molded from 28 vol% polypropylene (PP). The functionalized CPC shows higher strength and elongation than as-produced CPC based on the tensile and flexural tests. The highest flexural and tensile strengths are 80 and 35 MPa, respectively. The functionalized CPC also exhibits higher hardness and better electrical properties than as-produced CPC. Thus, functionalization with CNTs and Graphite enable the reinforcement and formation electrical conducting networks between metal- and carbon-based fillers within a polymer matrix.  相似文献   

4.
以不锈钢纤维为导电填料,分别与ABS和PP复合,制得了电磁屏蔽用导电高分子复合材料。考察了表面改性和复合工艺对金属纤维/聚合物复合材料性能的影响。结果表明,用不同表面处理剂处理不锈钢纤维后,随纤维表面张力增加,复合材料的电阻率增加。使用母料法工艺可以有效地改善金属纤维在聚合物基体中的分散,从而提高复合材料的导电性能和电磁屏蔽性能。  相似文献   

5.
Fabricating carbon nanotube-based composites requires high degree of dispersion of carbon nanotubes into a polymer matrix. The widely used approaches reported in open literature for such a purpose are usually complicated and high-cost. Herein, we found that Chinese ink could be used to prepare composites composed of multi-walled carbon nanotubes (MWCNTs) and polyvinyl alcohol (PVA). The Chinese ink acted as a solvent and a dispersant. The MWCNT-ink-PVA ternary composite possessed both high flexibility and high electrical conductivity, with an optimized electrical conductivity of 8.17 S cm−1. This simple method is believed to be applicable to other nanosacle carbon materials.  相似文献   

6.
Stretchable conductors, which can keep their excellent electrical conductivity while highly stretched, have been investigated extensively due to their wide range of applications in flexible and stretchable electronics, wearable displays, etc.; however, their preparation is often complicated and expensive. Herein, an efficient method to prepare high performance stretchable conductors through morphological control of conductive networks formed with carbon nanotubes (CNTs) in an elastomer matrix is reported. It is observed that an interface‐mediated method could be used to align randomly oriented filler during stretching and to induce buckling of CNTs during relaxation. Further morphological studies indicate the possible formation of a wavy CNT structure induced by cyclic pre‐straining. Subsequent thermal annealing is observed to collapse the oriented network and improve the local contacts between conductive networks. Through such a simple procedure, a conductivity of nearly 1000 S m?1 and a stretchability of 200% can be achieved for composites containing 20 wt% CNTs. CNTs are observed to buckle over a large area in polymer bulk, and the combination of pre‐straining and thermal annealing modifies the conductive network in the elastomer matrix. As a general method, this could be used for easy fabrication of high‐performance stretchable conductors for arbitrary‐shaped objects on a large scale.  相似文献   

7.
In this study, phenolic foam (PF)/multi-walled carbon nanotubes (MWCNTs) composites were fabricated by in-situ polymerization, and carbonized foams based on these PF foams were prepared and the electrical property was investigated. TEM results indicated excellent dispersion of MWCNTs in the phenolic resin matrix. Scanning electron microscope results indicated that PF composites exhibited smaller cell size, thicker cell wall thickness, and higher cell density, compared with pure PF. The incorporating of MWCNTs significantly improved the mechanical properties of PF. All PF composites showed a lower thermal conductivity versus pure PF. Moreover, the carbonized pure and composites PF exhibited open-cell three-dimensional skeleton carbon structure and the MWCNTs were well-dispersed on the surface of the skeletons. It is noteworthy that the introduction of MWCNTs significantly improved the electrical performances of foams and carbonized foams by construction of conductive MWCNTs network.  相似文献   

8.
In this study, epoxy-based nanocomposites containing multi-wall carbon nanotubes (CNTs) were produced by a calendering approach. The electrical conductivities of these composites were investigated as a function of CNT content. The conductivity was found to obey a percolation-like power law with a percolation threshold below 0.05 vol.%. The electrical conductivity of the neat epoxy resin could be enhanced by nine orders of magnitude, with the addition of only 0.6 vol.% CNTs, suggesting the formation of a well-conducting network by the CNTs throughout the insulating polymer matrix. To characterize the dispersion and the morphology of CNTs in epoxy matrix, different microscopic techniques were applied to characterize the dispersion and the morphology of CNTs in epoxy matrix, such as atomic force microscopy, transmission electron microscopy, and scanning electron microscopy (SEM). In particular, the charge contrast imaging in SEM allows a visualization of the overall distribution of CNTs at a micro-scale, as well as the identification of CNT bundles at a nano-scale. On the basis of microscopic investigation, the electrical conduction mechanism of CNT/epoxy composites is discussed.  相似文献   

9.
Aim of this research was to electrospin conductive composite membrane of styrene-co-acrylonitrile (SAN) reinforced with carbon nanotubes (CNTs). To improve electrical conductivity of final membrane ionic liquid (IL) was used. For better dispersion of CNTs in SAN matrix one-step reactive melt blending method for grafting of SAN onto CNTs was developed. Influence of SANm-g-CNTs on solutions properties was studied and compared to solutions with ungrafted CNTs and carboxyl group functionazed CNTs (CNT-COOHs). Combination of IL and SANm-g-CNTs increase in to orders of magnitude SAN membrane tensile stress and modulus. Electrical conductivity of obtained membranes achieved the level of semi-conductor materials.  相似文献   

10.
Herein, hybridization of graphene nanosheets and carbon nanotubes (CNTs) has been made to solve the problem of restacking of graphene nanosheets and agglomeration of CNTs. The multiwalled carbon nanotubes (MWCNTs), reduced graphene oxide (RGO) and graphene oxide–carbon nanotubes (GCNTs) reinforced acrylonitrile butadiene styrene (ABS) composites have been prepared using micro-twin-screw extruder. The effect of these reinforcements on static and dynamic mechanical properties of composites is studied. The ultimate tensile strength and elastic modulus for 7 wt.% GCNT–ABS composites show enhancement of 26.1 and 71.3% over pure ABS matrix, respectively. Various parameters such as coefficient “C” factor (the ratio of storage modulus of the composite to polymer in glassy and rubbery regions), degree of entanglement, crosslink density and adhesion factor have been calculated to analyze the interaction between fillers and polymer matrix. The 3-D hybrid structure of GCNTs overcomes the associated problem of CNTs agglomeration and graphene restacking. GCNT hybrid composites show higher dispersion as well as effectiveness for increased filler amount as compared to RGO and MWCNTs based composites. GCNTs prove its superiority over MWCNTs and RGO by showing a synergistic effect in the glass transition temperature and storage modulus. Raman spectroscopy and scanning electron microscopy are used to confirm the interaction and distribution of the filler and matrix, respectively.  相似文献   

11.
Oh Y  Suh D  Kim Y  Lee E  Mok JS  Choi J  Baik S 《Nanotechnology》2008,19(49):495602
Carbon nanotubes (CNTs) have advantages as conductive fillers due to their large aspect ratio and excellent conductivity. In this study, a novel silver/conducting polymer composite was developed by the incorporation of silver-plated CNTs. It is important to achieve a homogeneous dispersion of nanotubes and to improve the interfacial bonding to utilize the excellent properties of reinforcements in the matrix material. The homogeneous dispersion of nanotubes was achieved by an acid treatment process, and the interfacial contact was improved by electroless silver plating around nanotubes. The resistivity of the silver/conducting polymer composite was decreased by 83% by the addition of silver-plated single-walled carbon nanotubes. Conductive bumps were also screen-printed to demonstrate the capability of the composite as electrical interconnects for multi-layer printed circuit boards.  相似文献   

12.
王婧雯  张静静  范同祥 《材料导报》2018,32(17):2932-2939, 2948
碳纳米管因特殊结构带来的优异性能而被海内外学者广泛关注,以碳纳米管为增强相制备铜基复合材料是使铜基导体同时具有高强度和高导电性能的有效途径。然而,由于碳纳米管表面能高、表面反应活性低,碳纳米管/铜复合材料制备的过程中存在增强体分散性差和界面结合强度弱两大问题,从而阻碍了复合材料高性能的实现。在碳纳米管/铜复合材料的制备过程中,采用适当的方法对碳纳米管进行表面处理能改变碳纳米管的表面结构和反应活性,在改善碳纳米管的分散性的同时增强碳纳米管与铜基体的界面结合,从而提高碳纳米管的增强效率,保证复合材料良好的综合性能。然而,表面处理过程可能会破坏碳纳米管的结构完整性,影响碳纳米管的本征性能,进而影响其增强效果,或可能在基体中引入其他杂质,影响复合材料的导电和导热性能。因此,在进行表面处理时应综合考虑其对碳纳米管结构性能及复合材料增强作用的影响。近年来,研究者们通过优化碳纳米管表面处理工艺突破了碳纳米管/铜复合材料在制备过程的难点,在保证铜基体优异的导电、导热性能的同时,大幅提高了碳纳米管/铜复合材料的力学性能。碳纳米管表面处理工艺类型大致可分为机械球磨、化学表面改性、表面镀层和联合表面处理四类。传统的机械球磨表面处理对碳纳米管的结构破坏较大;化学表面改性又分为共价表面改性和非共价表面改性,非共价表面改性在保持碳纳米管完整的管状结构和优异性能的同时,提高了碳纳米管在溶液中的分散性,但用于复合材料制备时会给基体引入有机杂质,影响复合材料性能;共价表面改性和表面镀层是铜基复合材料制备过程中最为常用和有效的表面处理方法,其能够在提高碳纳米管在基体中的分散性能的同时改善碳纳米管表面的反应活性,从而形成碳纳米管和铜基体之间强度较高的反应结合界面,实现碳纳米管/铜复合材料高强高导的综合性能。此外,可通过综合利用各种表面处理方法,结合各表面处理工艺的优势,获得更为优异的改性效果。本文从碳纳米管表面处理工艺的基本类型以及碳纳米管表面处理对铜基复合材料结构和性能的影响两方面阐述了碳纳米管表面处理在铜基复合材料中的应用和研究进展,并对其未来的研究方向进行了展望。  相似文献   

13.
In this paper, bulk polymeric composites with staggered orientation of carbon nanotubes (CNTs) in polymer matrix were prepared by means of a macro layer-by-layer (MLBL) method, while an alternating current (AC) electric field was applied for inducing alignment of the CNTs. Test results verified that there existed a relationship between conductive capacity of the composites and orientation of the CNTs in matrix. Conductivity of the composites containing aligned CNTs represented a dependency on time and testing history on the composite specimens. Among the composites with different orientation types of CNTs in the matrices, the composite specimens including staggered orientation of CNTs in polymer matrix demonstrated the most outstanding electric conductivity and showed similar conductive properties in the two directions of the CNT alignment.  相似文献   

14.
This study uses a melt extrusion method, a method for producing wires, to coat polyester (PET) yarns with polypropylene (PP) and multi-walled carbon nanotubes (MWCNTs). The resulting PP/MWCNTs-coated PET conductive yarns are tested for their tensile properties, processability, morphology, melting and crystallization behaviors, electrical conductivity, and applications. The test results indicate that tensile strength of the conductive yarns increases with an increase in the coiling speed that contributes to a more single-direction-orientated MWCNTs arrangement as well as a greater adhesion between PP/MWCNTs and PET yarns. 8 wt% MWCNTs results in an 18 °C higher crystallization temperature (Tc) of PP and an electrical conductivity of 0.8862 S/cm. The test results of this study have proven that this form of processing technology can prepare PP/MWCNTs-coated PET conductive yarns that have satisfactory tensile properties and electrical conductivity, and can be used in functional woven fabrics and knitted fabrics.  相似文献   

15.
Polycarbonate (PC)/liquid crystalline polymer (LCP)/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. The chemical modification of MWCNT enhances the compatibility as well as miscibility between Polycarbonate and LCP in the concerned composites. Incorporation of functionalized MWCNTs improves the thermal, mechanical dynamic mechanical and electrical properties of the composites. Storage modulus and glass transition temperature increases in a remarkable fashion due to the enhanced interfacial adhesion between the PC/LCP/COOH-MWCNT. Field emission microscopy (FESEM) and HRTEM exhibit LCP fibrillation and fine dispersion of COOH-MWCNT throughout the matrix highlighting the miscibility between LCP and PC matrix.  相似文献   

16.
碳纳米管与铝基体的结合,可以获得导电和导热性良好及综合力学性能优异的复合材料,有望成为新一代轻质高强、结构功能一体化的复合材料.在制备碳纳米管增强铝基复合材料过程中,碳纳米管的团聚将降低界面结合,诱发缺陷产生,导致性能大幅下降,因此,调控优化碳纳米管的分散状态、含量成为获取良好界面结合,获得高性能碳纳米管增强铝基复合材...  相似文献   

17.
Commercial and home-made carbon nanotubes (CNTs) were plasma treated under oxygen atmosphere and then added to polyamide 6 (PA6) in order to prepare fibres by melt spinning. For comparison, pristine nanofillers were used too. The effect of functionalization and of filler characteristics on the morphological, rheological, mechanical and electrical properties of the fibres was studied by TEM and SEM, rheological measurements, tensile and electrical conductivity tests. The results demonstrated that the functionalization led to a better mechanical performance and the morphological analysis confirmed that the adhesion, the dispersion and the alignment of the nanotubes within the polymer matrix were improved when using functionalized CNTs. Electrical tests marked that functionalization slightly reduced the conductivity of the materials.  相似文献   

18.
Multi-walled carbon nanotubes (MWCNTs) were carboxyl-functionalized in order to improve their dispersion in a polymer matrix. The carboxyl-functionalized MWCNTs (i.e., MWCNT-COOH) were added into a blend matrix consisting of polyamide 6 (PA6) and liquid crystalline polymer (LCP) (PA6:LCP = 80:20 in weight) to make ternary composites. The effects of MWCNT-COOH on the rheological, physical, morphological, thermal, mechanical, and electrical properties of the ternary composites have been examined systematically. The dispersion of MWCNTs in the polymer matrix and their interactions with the polymers (i.e., PA6 and LCP) were found to be the most important factors affecting all properties. The functionalization of MWCNTs resulted in the significant improvement in their dispersion in the polymer matrix and largely enhanced the interactions of MWCNTs with the polymer matrix. The functionalized MWCNTs acted not only as reinforcement fillers but also as a compatibilizer that could enhance the interfacial adhesion between PA6 and LCP. Interestingly, the packing density of the polymer matrix was greatly increased by adding MWCNT-COOH.  相似文献   

19.
Multiwalled carbon nanotubes (MWCNTs)-filled polycarbonate (PC), poly(vinylidene fluoride) (PVDF) and PC/PVDF conductive composites were fabricated using melt mixing, respectively. The dynamic process of MWCNTs conductive network formation in the composites was in situ traced by recording the variation of electrical resistivity with time during annealing treatments. As a result, the percolation threshold for the MWCNTs-filled PC/PVDF system was much lower than those of MWCNTs-filled individual polymers and the MWCNTs were selectively located in the PC phase of PC/PVDF composite, which had been verified by scanning electron microscopy measurements. The activation energy of conductive network formation for PC/PVDF/MWCNTs composite was close to that of the PC/MWCNTs system, which further confirmed that MWCNTs were dispersed mainly in the PC phase. Furthermore, the assembly velocity of MWCNTs in the polymer melt increased with annealing temperature.  相似文献   

20.
CNTs/ UHMWPE composites with a two-dimensional conductive network   总被引:1,自引:0,他引:1  
A low percolation threshold can be achieved for the conductive polymer composites(CPC) materials having a segregated structure in which the conductive particles like carbon black (CB), carbon nanotubes (CNTs), etc. are only located on the interface of the polymer matrix particles instead of being randomly distributed in the whole system. Multiwalled carbon nanotubes (MWNTs) were experienced alcohol-assisted dispersion under ultrasonication and intense mechanical mixing, and only located on the interfaces of the ultrahigh molecular weight polyethylene (UHMWPE) matrix particles to form a segregated structure. The morphological observation and the critical exponent t value obtained from the classical threshold mechanism indicate that the MWNTs/UHMWPE composites form a 2-dimension conductive network, which leads to a very low percolation of 0.072vol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号