首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of anaerobic digestion (AD) technology on mitigating greenhouse gas (GHG) emissions from manure management on typical dairy, sow and pig farms in Finland was compared. Firstly, the total annual GHG emissions from the farms were calculated using IPCC guidelines for a similar slurry type manure management system. Secondly, laboratory-scale experiments were conducted to estimate methane (CH4) potentials and process parameters for semi-continuous digestion of manures. Finally, the obtained experimental data were used to evaluate the potential renewable energy production and subsequently, the possible GHG emissions that could be avoided through adoption of AD technology on the studied farms. Results showed that enteric fermentation (CH4) and manure management (CH4 and N2O) accounted for 231.3, 32.3 and 18.3 Mg of CO2 eq. yr?1 on dairy, sow and pig farms, respectively. With the existing farm data and experimental methane yields, an estimated renewable energy of 115.2, 36.3 and 79.5 MWh of heat yr?1 and 62.8, 21.8 and 47.7 MWh of electricity yr?1 could be generated in a CHP plant on these farms respectively. The total GHG emissions that could be offset on the studied dairy cow, sow and pig farms were 177, 87.7 and 125.6 Mg of CO2 eq. yr?1, respectively. The impact of AD technology on mitigating GHG emissions was mainly through replaced fossil fuel consumption followed by reduced emissions due to reduced fertilizer use and production, and from manure management.  相似文献   

2.
《Biomass & bioenergy》2005,28(5):475-489
Nonrenewable energy consumption and greenhouse gas (GHG) emissions associated with ethanol (a liquid fuel) derived from corn grain produced in selected counties in Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin are presented. Corn is cultivated under no-tillage practice (without plowing). The system boundaries include corn production, ethanol production, and the end use of ethanol as a fuel in a midsize passenger car. The environmental burdens in multi-output biorefinery processes (e.g., corn dry milling and wet milling) are allocated to the ethanol product and its various coproducts by the system expansion allocation approach.The nonrenewable energy requirement for producing 1 kg of ethanol is approximately 13.4–21.5 MJ (based on lower heating value), depending on corn milling technologies employed. Thus, the net energy value of ethanol is positive; the energy consumed in ethanol production is less than the energy content of the ethanol (26.8 MJ kg−1).In the GHG emissions analysis, nitrous oxide (N2O) emissions from soil and soil organic carbon levels under corn cultivation in each county are estimated by the DAYCENT model. Carbon sequestration rates range from 377 to 681 kg C ha−1 year−1 and N2O emissions from soil are 0.5–2.8 kg N ha−1 year−1 under no-till conditions. The GHG emissions assigned to 1 kg of ethanol are 260–922 g CO2 eq. under no-tillage. Using ethanol (E85) fuel in a midsize passenger vehicle can reduce GHG emissions by 41–61% km−1 driven, compared to gasoline-fueled vehicles. Using ethanol as a vehicle fuel, therefore, has the potential to reduce nonrenewable energy consumption and GHG emissions.  相似文献   

3.
Switchgrass (Panicum virgatum) serves as a model dedicated energy crop in the U.S.A. Miscanthus (Miscanthus x giganteus) has served a similar role in Europe. This study was conducted to determine the most economical species, harvest frequency, and carbon tax required for either of the two candidate feedstocks to be an economically viable alternative for cofiring with coal for electricity generation. Biomass yield and energy content data were obtained from a field experiment conducted near Stillwater, Oklahoma, U.S.A., in which both grasses were established in 2002. Plots were split to enable two harvest treatments (once and twice yr?1). The switchgrass variety ‘Alamo’, with a single annual post-senescence harvest, produced more biomass (15.87 Mg ha?1 yr?1) than miscanthus (12.39 Mg ha?1 yr?1) and more energy (249.6 million kJ ha?1 yr?1 versus 199.7 million kJ ha?1 yr?1 for miscanthus). For the average yields obtained, the estimated cost to produce and deliver biomass an average distance of 50 km was $43.9 Mg?1 for switchgrass and $51.7 Mg?1 for miscanthus. Given a delivered coal price of $39.76 Mg?1 and average energy content, a carbon tax of $7 Mg?1 CO2 would be required for switchgrass to be economically competitive. For the location and the environmental conditions that prevailed during the experiment, switchgrass with one harvest per year produced greater yields at a lower cost than miscanthus. In the absence of government intervention such as requiring biomass use or instituting a carbon tax, biomass is not an economically competitive feedstock for electricity generation in the region studied.  相似文献   

4.
《Biomass & bioenergy》2006,30(4):296-303
Mitigating global climate change via CO2 emission control and taxation is likely to enhance the economic potential of bioenergy production and utilization. This study investigated the cost competitiveness of woody biomass for electricity production in the US under alternative CO2 emission reductions and taxes. We first simulated changes in the price of coal for electricity production due to CO2 emission reductions and taxation using a computable general equilibrium model. Then, the costs of electricity generation fueled by energy crops (hybrid poplar), logging residues, and coal were estimated using the capital budgeting method. Our results indicate that logging residues would be competitive with coal if emissions were taxed at about US$25 Mg−1 CO2, while an emission tax US$100 Mg−1 CO2 or higher would be needed for hybrid poplar plantations at a yield of 11.21 dry Mg ha−1 yr−1 (5 dry tons ac−1 yr−1) to compete with coal in electricity production. Reaching the CO2 emission targets committed under the Kyoto Protocol would only slightly increase the price of fossil fuels, generating little impact on the competitiveness of woody biomass. However, the price of coal used for electricity production would significantly increase if global CO2 emissions were curtailed by 20% or more. Logging residues would become a competitive fuel source for electricity production if current global CO2 emissions were cut by 20–30%. Hybrid poplar plantations would not be able to compete with coal until emissions were reduced by 40% or more.  相似文献   

5.
《Biomass & bioenergy》2007,31(8):543-555
The energetic and environmental performance of production and distribution of the Brassica carinata biomass crop in Soria (Spain) is analysed using life cycle assessment (LCA) methodology in order to demonstrate the major potential that the crop has in southern Europe as a lignocellulosic fuel for use as a renewable energy source.The Life Cycle Impact Assessment (LCIA) including midpoint impact analysis that was performed shows that the use of fertilizers is the action with the highest impact in six of the 10 environmental categories considered, representing between 51% and 68% of the impact in these categories.The second most important impact is produced when the diesel is used in tractors and transport vehicles which represents between 48% and 77%. The contribution of the B. carinata cropping system to the global warming category is 12.7 g CO2 eq. MJ−1 biomass produced. Assuming a preliminary estimation of the B. carinata capacity of translocated CO2 (631 kg CO2 ha−1) from below-ground biomass into the soil, the emissions are reduced by up to 5.2 g CO2 eq. MJ−1.The production and transport are as far as a thermoelectric plant of the B. carinata biomass used as a solid fuel consumes 0.12 MJ of primary energy per 1 MJ of biomass energy stored. In comparison with other fossil fuels such as natural gas, it reduces primary energy consumption by 33.2% and greenhouse gas emission from 33.1% to 71.2% depending on whether the capacity of translocated CO2 is considered or not.The results of the analysis support the assertion that B. carinata crops are viable from an energy balance and environmental perspective for producing lignocellulosic solid fuel destined for the production of energy in southern Europe. Furthermore, the performance of the crop could be improved, thus increasing the energy and environmental benefits.  相似文献   

6.
Fast growing, short-rotation tree crops provide unique opportunities to sequester carbon on phosphate-mined lands in central Florida and, if used as a biofuel, can reduce CO2 emissions associated with electricity generation. Base case land expectation values (LEVs) of phosphate-mined land under Eucalyptus amplifolia (EA) forestry range from 762 to 6507 $ ha?1 assuming real discount rates of 10% and 4%, respectively. Assuming 5 $ Mg?1 C, these LEVs increase from 3% to 24% with incentives for in situ carbon sequestration benefits, or 21% to 73% given in situ carbon sequestration with additional incentives for reducing CO2 emissions through the use of EA as an energy feedstock. Potential benefits from below-ground C sequestration and mine land reclamation are estimated to be worth an additional 5642–11,056 $ ha?1.  相似文献   

7.
Miscanthus x giganteus (miscanthus) and Arundo donax L. (giant reed) are two perennial crops which have been received particular attention during the last decade as bioenergy crops. The main aim of the present study was to compare the above-ground biomass production and the energy balance of these perennial rhizomatous grasses in a long-term field experiment. The crops were cultivated from 1992 to 2003 in the temperate climate of Central Italy with 20,000 plants ha?1, 100–100–100 kg N, P2O5, K2O per hectare, and without irrigation supply. For each year of trial, biomass was harvested in autumn to estimate biometric characteristics and productive parameters. Besides, energy analysis of biomass production was carried out determining energy output, energy input, energy efficiency (output/input) and net energy yield (output–input). Results showed high above-ground biomass yields over a period of 10 years for both species, with better productive performances in giant reed than in miscanthus (37.7 t DM ha?1 year?1 vs 28.7 t DM ha?1 year?1 averaged from 2 to 12 years of growth). Such high yields resulted positively correlated to number of stalks (miscanthus), plant height and stalk diameter (giant reed). Moreover, these perennial species are characterised by a favourable energy balance with a net energy yield of 467 and 637 GJ ha?1 (1–12 year mean) for miscanthus and giant reed respectively.With such characteristics, both grasses could be proposed as biomass energy crops in Southern Europe with a significant and environmentally compatible contribution to energy needs.  相似文献   

8.
《Biomass & bioenergy》2006,30(7):638-647
The use of firewood for domestic heating has the potential to reduce fossil-fuel use and associated CO2 emissions. The level of possible reductions depends upon the extent to which firewood off-sets the use of fossil fuels, the efficiency with which wood is burnt, and use of fossil fuels for collection and transport of firewood. Plantations grown for firewood also have a cost of emissions associated with their establishment. Applying the FullCAM model and additional calculations, these factors were examined for various management scenarios under three contrasting firewood production systems (native woodland, sustainably managed native forest, and newly established plantations) in low-medium rainfall (600–800 mm) regions of south-eastern Australia. Estimates of carbon dioxide emissions per unit of heat energy produced for all scenarios were lower than for non-renewable energy sources (which generally emit about 0.3–1.0 kg CO2 kWh−1). Amongst the scenarios, emissions were greatest when wood was periodically collected from dead wood in woodlands (0.11 kg CO2 kWh−1), and was much lower when obtained from harvest residues and dead wood in native forests (<0.03 kg CO2 kWh−1). When wood was obtained from plantations established on previously cleared agricultural land, use of firewood led to carbon sequestration equivalent to −0.06 kg CO2 kWh−1 for firewood obtained from a coppiced plantation, and −0.17 kg CO2 kWh−1 for firewood collected from thinnings, slash and other residue in a plantation grown for sawlog production. An uncertainty analysis, where inputs and assumptions were varied in relation to a plausible range of management practices, identified the most important influencing factors and an expected range in predicted net amount of CO2 emitted per unit of heat energy produced from burning firewood.  相似文献   

9.
The area used for bioenergy feedstock production is increasing because substitution of fossil fuels by bioenergy is promoted as an option to reduce greenhouse gas (GHG) emissions. However, agriculture itself contributes to rising atmospheric nitrous oxide (N2O) and methane (CH4) concentrations. In this study we tested whether the net exchanges of N2O and CH4 between soil and atmosphere differ between annual fertilized and perennial unfertilized bioenergy crops. We measured N2O and CH4 soil fluxes from poplar short rotation coppice (SRC), perennial grass-clover and annual bioenergy crops (silage maize, oilseed rape, winter wheat) in two central German regions for two years. In the second year after establishment, the N2O emissions were significantly lower in SRC (<0.1 kg N2O–N ha−1 yr−1) than grassland (0.8 kg N2O–N ha−1 yr−1) and the annual crop (winter wheat; 1.5 kg N2O–N ha−1 yr−1) at one regional site (Reiffenhausen). However, a different trend was observed in the first year when contents of mineral nitrogen were still higher in SRC due to former cropland use. At the other regional site (Gierstädt), N2O emissions were generally low (<0.5 kg N2O–N ha−1 yr−1) and no crop-type effects were detected. Net uptake of atmospheric CH4 varied between 0.4 and 1.2 kg CH4–C ha−1 yr−1 with no consistent crop-type effect. The N2O emissions related to gross energy in the harvested biomass ranged from 0.07 to 6.22 kg CO2 equ GJ−1. In both regions, Gierstädt (low N2O emissions) and more distinct Reiffenhausen (medium N2O emissions), this energy yield-related N2O emission was the lowest for SRC.  相似文献   

10.
Sunn hemp (Crotolaria juncea), is a fast growing, high biomass yielding tropical legume that may be a possible southeastern bioenergy crop. When comparing this legume to a commonly grown summer legume – cowpeas (Vigna unguiculata), sunn hemp was superior in biomass yield (kg ha?1) and subsequent energy yield (GJ ha?1). In one year of the study after 12 weeks of growth, sunn hemp had 10.7 Mg ha?1 of biomass with an energy content of 19.0 Mg ha?1. This resulted in an energy yield of 204 GJ ha?1. The energy content was 6% greater than that of cowpeas. Eventhough sunn hemp had a greater amount of ash, plant mineral concentrations were lower in some cases of minerals (K, Ca, Mg, S) known to reduce thermochemical conversion process efficiency. Pyrolytic degradation of both legumes revealed that sunn hemp began to degrade at higher temperatures as well as release greater amounts of volatile matter at a faster rate.  相似文献   

11.
《Biomass & bioenergy》2006,30(3):198-206
Limited information is available regarding biomass production potential of long-term (>5- yr-old) switchgrass (Panicum virgatum L.) stands. Variables of interest in biomass production systems include cultivar selection, site/environment effects, and the impacts of fertility and harvest management on productivity and stand life. We studied biomass production of two upland and two lowland cultivars under two different managements at eight sites in the upper southeastern USA during 1999–2001. (Sites had been planted in 1992 and continuously managed for biomass production.) Switchgrass plots under lower-input management received 50 kg N ha−1 yr−1 and were harvested once, at the end of the season. Plots under higher-input management received 100 kg N ha−1 (in two applications) and were harvested twice, in midsummer and at the end of the season. Management effects on yield, N removal, and stand density were evaluated. Annual biomass production across years, sites, cultivars, and managements averaged 14.2 Mg ha−1. Across years and sites, a large (28%) yield response to increased inputs was observed for upland cultivars; but the potential value of higher-input management for lowland cultivars was masked overall by large site×management interactions. Nitrogen removal was greater under the higher-input system largely due to greater N concentrations in the midsummer harvests. Management recommendations (cultivar, fertilization, and harvest frequency), ideally, should be site and cultivar dependent, given the variable responses reported here.  相似文献   

12.
《Biomass & bioenergy》2005,28(1):7-14
This paper reviews the e economics of short rotation coppice willow as an energy crop in Northern Ireland. Gross margins are presented for willow production and compared with, in the particular circumstances of Northern Ireland, equivalent outputs from grain production, lowland sheep and suckler cow production. The model used indicated a gross margin of £45 ha−1 yr−1 for a 12 tDM ha−1 annual coppice crop without subsidies where the crop value was placed at £40 t−1. This was equivalent to a 7 t winter wheat crop at £70 t−1 and compared favourably with both lowland sheep and suckler cows.Currently the industry in Northern Ireland is at a very early stage of development and this imposes cost penalties on the pioneer growers. This situation is compared with the situation in Sweden where there is an established industry of 15,000 ha, where costs are significantly lower. Gross margin for the pioneer grower in Northern Ireland is about £100 ha−1 yr−1 less than for Swedish willow growers.  相似文献   

13.
Emissions from masonry heaters and sauna stoves were studied. In the sauna stove the production of organic gaseous carbon (OGC) at 10 gC kg?1 (per kilogram of fuel), carbon monoxide (CO) at 55 g kg?1, fine particle mass (PM1) at 5 g kg?1 and number emissions (N) at 1.8 × 1015 kg?1 was higher than in other measured appliances. In a modern technology masonry heater with a unique grate, the emissions were very low: 0.4 gC kg?1 OGC, 14 g kg?1 CO and 0.7 g kg?1 PM1. Conventional masonry heaters, using small logs, clearly produced higher emissions when compared to using large logs. Doubling the fuel load caused emission factors to increase by up to 4- times (OGC), except for the number emission, which decreased from 4.0 × 1014 to 2.0 × 1014 kg?1. From the conventional masonry heater 90% of the PM was emitted during the firing phase. Its combustion process is different to that in stoves or conventional open fireplaces. The insufficient supply of air, due to too fast pyrolysis, and increased ash release, due to the high combustion temperature, are the main parameters which cause high particle and gas emissions in masonry heaters and sauna stoves.  相似文献   

14.
Although perennial grasses show considerable potential as candidates for lignocellulosic bioenergy production, these crops exhibit considerable variation in regional adaptability and yield. Giant miscanthus (Miscanthus × giganteus Greef & Deuter), Miscanthus sinensis Anderss. ‘Gracillimus’ and MH2006, plume grass (Saccharum arundinaceum Retz.), ravenna grass (Saccharum ravennae (L.) L.), switchgrass (Panicum virgatum L. ‘Alamo’), and giant reed (Arundo donax L.) field plots were established in 2008, treated with four nitrogen (N) fertilizer rates (0, 34, 67, 134 kg ha−1 y−1), and harvested annually in winter from 2008 to 2011. Giant reed, ‘Gracillimus’, switchgrass, MH2006, giant miscanthus and ravenna grass at the Mountain site produced mean dry matter yields of 22.8, 21.3, 20.9, 19.3, 18.4, and 10.0 Mg ha−1 y−1, respectively (averaged over the last two years). Dry matter yields at the Coastal site for giant reed, giant miscanthus, switchgrass, ravenna grass, and ‘Gracillimus’ were 27.4, 20.8, 20.1, 14.3, and 9.4 Mg ha−1 y−1, respectively (averaged over the last two years). Increasing N rates up to 134 kg N ha−1 did not have a consistent significant effect on biomass production. High yields coupled with high mortality for plume grass at both sites indicates its potential as a bioenergy crop and need for continued improvement. Overall, the perennial grasses in this study had low nutrient removal, although giant reed and plume grass often removed significantly more N, P, K and S compared with Miscanthus spp. and switchgrass. Our results indicate that giant reed, giant miscanthus, and switchgrass are productive bioenergy crops across geographic regions of North Carolina.  相似文献   

15.
《Biomass & bioenergy》2007,31(10):700-709
The crown biomass, being one of the most susceptible components of the above-ground tree biomass, could respond positively to environmental changes and temporary increase in nutrient availability. The influence of wood ash and nitrogen fertilization on crown biomass was studied in a 40-year-old Scots pine (Pinus sylvestris L.) stand growing on a Haplic Arenosol. The 36-model trees for the crown biomass measurements were sampled for 3 growing seasons after the application of 5.0 t wood ash ha−1, 180 kg N ha−1, 2.5 t wood ash ha−1 plus 180 kg N ha−1, and control (untreated plots). The masses of the current, 1-year-old and older needles and shoots, and branches were measured. A significant influence on the current year needles and shoots was found after the application of 180 kg N ha−1 or 2.5 t wood ash ha−1 plus 180 kg N ha−1. When wood ash was applied in combination with nitrogen, an extra response tendency of the crown growth, especially of the top and the middle sections of the crown, was determined. However, there was no short-term influence of wood ash on crown biomass growth.  相似文献   

16.
17.
The partitioning and quality of aboveground biomass have important ramifications for crop management and biomass conversion. In preliminary studies, Saccharum sp. × Miscanthus sp. hybrids exhibited stubble cold tolerance in west-central Arkansas, unlike Saccharum sp. × Saccharum spontaneum hybrids. The objective was to examine foliar and stem quality of the C4 grasses Miscanthus sinensis (‘Gracillimus’), Miscanthus x giganteus (Q42641, proprietary), Panicum virgatum (‘Alamo’), and two F1 hybrids of Saccharum sp. × Miscanthus sp. (US84-1028 and US84-1058) in a field study during 2004 (plant cane) and 2005 (first stubble) near Booneville, AR. Switchgrass produced more stems m?2 than the other entries both years, and there was little difference in stem number among other entries. Clone US84-1028 yielded more dry mass m?2 than other entries in plant cane, while switchgrass, US84-1028, and M. x giganteus did not differ in first stubble. Clone US84-1028 also had more stem dry mass and leaf dry mass than other entries both yr. Tissue N concentrations were low for these entries, but leaves contained about twice the N of stems (≤15.2 and 7.8 g kg?1, respectively). Leaves represented as much as one-third of total biomass, and had large cellulose (≤482 g kg?1) and lignin (167 g kg?1) concentrations. The competitively high biomass yield of this small sample of sugarcane alleles should encourage the expansion of the crop beyond its current production regions. Sugarcane and M. x giganteus should be examined in higher-input temperate systems because of their bioenergy potential.  相似文献   

18.
《Biomass & bioenergy》2007,31(6):367-374
Populus nigra as an autochthonous European woody species is irreplaceable in regions where it is not legal to plant allochthonous species. Twelve clones of P. nigra ssp. nigra and one clone NE-42 (Populus maximowiczii×Populus trichocarpa) were tested in two localities at altitudes of 515–600 m with annual temperatures 5.7–6.8 °C. Different cultural practices and nutrition were used in these localities. Rooted plants were set out (2222 plants ha−1). The second harvest was carried out after 4 years in a 7-year crop. The yield of the best clones of P. nigra (7.6–7.9 t ha−1 yr−1) approached the yield of hybrid clone (9.4 t ha−1 yr−1) in a fertilised locality, with pH=6.7 and lower rainfall amounts in the growing season. In a locality with pH=5, without fertilisation and with high groundwater level the yield of clones of P. nigra was 4.6–2.2 t ha−1 yr−1, in clone NE-42 it was 9.8 t ha−1 yr−1. The most productive clones of P. nigra had a significantly higher number of shoots (16.8–14.2) than the clone NE-42 (9.3) and the mortality of their shoots was lower (14–31.4%) than in NE-42 (32.1%). Shoots 20–53 mm in diameter accounted for 50% of the volume index of shoots in almost 70% of P. nigra clones. In high-yielding clones of P. nigra the dry weight of lateral shoots in total weight ranged between 66% and 75% while in NE-42 it was 55%. Resistance to Melampsora larici-populina Kleb. was higher in the interspecific hybrid but the best clone of P. nigra had a similar level of resistance.  相似文献   

19.
This paper examines policy and technology scenarios in California, emphasizing greenhouse gas (GHG) emissions in 2020 and 2030. Using CALGAPS, a new, validated model simulating GHG and criteria pollutant emissions in California from 2010 to 2050, four scenarios were developed: Committed Policies (S1), Uncommitted Policies (S2), Potential Policy and Technology Futures (S3), and Counterfactual (S0), which omits all GHG policies. Forty-nine individual policies were represented. For S1–S3, GHG emissions fall below the AB 32 policy 2020 target [427 million metric tons CO2 equivalent (MtCO2e) yr−1], indicating that committed policies may be sufficient to meet mandated reductions. In 2030, emissions span 211–428 MtCO2e yr−1, suggesting that policy choices made today can strongly affect outcomes over the next two decades. Long-term (2050) emissions were all well above the target set by Executive Order S-3-05 (85 MtCO2e yr−1); additional policies or technology development (beyond the study scope) are likely needed to achieve this objective. Cumulative emissions suggest a different outcome, however: due to early emissions reductions, S3 achieves lower cumulative emissions in 2050 than a pathway that linearly reduces emissions between 2020 and 2050 policy targets. Sensitivity analysis provided quantification of individual policy GHG emissions reduction benefits.  相似文献   

20.
This study examines energy consumption of inputs and output used in kiwifruit production, and to find relationship between energy inputs and yield in Mazandaran, Iran. For this purpose, the data were collected from 86 kiwifruit orchards which were selected based on random sampling method. The results indicated that total energy inputs were 30285.62 MJ ha?1. About 47% of this was generated by total fertilizer including farmyard manure, 28% from diesel fuel and machinery. About 70% of the total energy inputs used in kiwifruit production was indirect while only about 30% was direct. Econometric estimation results revealed that energy inputs of human labour, water for irrigation, total fertilizer and machinery contributed significantly to the yield. The impact of human labour energy (0.17) was found the highest among the other inputs in kiwifruit production. The results also showed that direct, indirect and renewable and non-renewable, energy forms had a positive impact on output level. Cost analysis showed that total cost of kiwifruit production was obtained as 6063.81 $ ha?1. The productivity (4.05 kg $?1) was obtained by dividing kiwifruit yield by total production cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号