首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is increasing interest in CO2 looping cycles that involve the repeated calcination and carbonation of the sorbent as a way to capture CO2 from flue gases during the carbonation step and the generation of a pure stream of CO2 in the oxyfired calcination step. In particular, attrition of the material in these interconnected fluidized bed reactors is a problem of general concern. Attrition of limestone derived materials has been studied in fluidized bed systems by numerous authors. In this work, we have investigated the attrition of two limestones used in a system of two interconnected circulating fluidized bed reactors operating in continuous mode as carbonation and calciner reactors. We observed a rapid initial attrition of both limestones during the calcination step which was then followed by a highly stable period (up to 140 h of added circulation for one of the limestones) during which particle size changes were negligible. This is consistent with previous observations of attrition in other systems that employ these materials. However, a comparison of the attrition model constants with the data reported in the literature showed the two limestones to be particularly fragile during the initial calcination and the first few hours of circulation. Thus, a careful choice of limestone based on its attrition properties must be taken into account in designing future carbonate looping systems.  相似文献   

2.
Calcium looping processes for capturing CO2 from large emissions sources are based on the use of CaO particles as sorbent in circulating fluidized‐bed (CFB) reactors. A continuous flow of CaO from an oxyfired calciner is fed into the carbonator and a certain inventory of active CaO is expected to capture the CO2 in the flue gas. The circulation rate and the inventory of CaO determine the CO2 capture efficiency. Other parameters such as the average carrying capacity of the CaO circulating particles, the temperature, and the gas velocity must be taken into account. To investigate the effect of these variables on CO2 capture efficiency, we used a 6.5 m height CFB carbonator connected to a twin CFB calciner. Many stationary operating states were achieved using different operating conditions. The trends of CO2 capture efficiency measured are compared with those from a simple reactor model. This information may contribute to the future scaling up of the technology. © 2010 American Institute of Chemical Engineers AIChE J, 57: 000–000, 2011  相似文献   

3.
The performance of a fixed-bed and entrained flow reactor for the sorption-enhanced methanol synthesis from CO2 is assessed by modelling. Both reactors achieve good performance but show possible drawbacks. The fixed bed reactor requires several units working in parallel, while the entrained flow reactor needs a large volume due to the high superficial particle velocity. We propose a new reactor type, which combines a circulating sorbent with a fluidized bed methanol catalyst in bubbling regime. This solution achieves high CO2 conversion with high space velocity in a continuous manner.  相似文献   

4.
Carbon capture and storage (CCS) technologies are a cornerstone for reducing CO2 emissions from energy and energy-intensive industries. Among the various CCS technologies, solid sorbent looping systems are considered to be potentially promising solutions for reducing CO2 capture energy penalty. We present an evaluation module for a carbonator with sorbent looping cycle to calculate the carbonation efficiency. The module incorporates a simple sorbent activity model, and the solid/gas balances are constructed by assuming simple reactor mixing quality. By conducting simulations, we examine the variation in the carbonation efficiencies as a function of the sorbent looping operation factors and discuss an optimum operating strategy.  相似文献   

5.
The effect of bed height on CO2 capture was investigated by carbonation/regeneration cyclic operations using a bubbling fluidized bed reactor. We used a potassium-based solid sorbent, SorbKX35T5 which was manufactured by the Korea Electric Power Research Institute. The sorbent consists of 35% K2CO3 for absorption and 65% supporters for mechanical strength. We used a fluidized bed reactor with an inner diameter of 0.05 m and a height of 0.8 m which was made of quartz and placed inside of a furnace. The operating temperatures were fixed at 70 °C and 150 °C for carbonation and regeneration, respectively. The carbonation/regeneration cyclic operations were performed three times at four different L/D (length vs diameter) ratios such as one, two, three, and four. The amount of CO2 captured was the most when L/D ratio was one, while the period of maintaining 100% CO2 removal was the longest as 6 minutes when L/D ratio was three. At each cycle, CO2 sorption capacity (g CO2/g sorbent) was decreased as L/D ratio was increased. The results obtained in this study can be applied to design and operate a large scale CO2 capture process composed of two fluidized bed reactors. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

6.
The calcium-looping process is a promising technique for CO2 capture from coal-fired power plants and for reducing GHG emissions from the power generation sector. This paper presents a calculation model of the carbonator, the key reactor of the Ca-looping process, where CO2 is captured as a result of its reaction with CaO. The model presented is based on the Kunii–Levenspiel theory for circulating fluidized bed and on the recent findings on the properties of CaO as a CO2 sorbent, while taking into account the effects of coal ash and sulfur species.This model can be used for process optimization and for the prediction of the performance of power plants based on the Ca-looping process. Also presented in this paper are the results of a sensitivity analysis of the primary parameters that influence the performance of the carbonator. These results confirm the feasibility of the Ca-looping process with reactors of reasonable size for industrial applications and highlight the importance of the properties of the Ca-based sorbent as they highly affect the carbonator's performance.  相似文献   

7.
A comparison of dual fluidized bed gasification of biomass with and without selective transport of CO2 from the gasification to the combustion reactor is presented. The dual fluidized bed technology provides the necessary heat for steam gasification by circulating hot bed material that is heated in a separate fluidized bed reactor by combustion of residual biomass char. The hydrogen content in producer gas of gasifiers based on this concept is about 40 vol% (dry basis). Addition of carbonates to the bed material and adequate adjustment of operation temperatures in the reactors allow selective transport of CO2 (absorption enhanced reforming—AER concept). Thus, hydrogen contents of up to 75 vol% (dry basis) can be achieved. Experimental data from a 120 kWFuel input pilot plant as well as thermodynamic data are used to determine the mass- and energy-balances. Carbon, hydrogen, oxygen, and energy balances for both concepts are presented and discussed.  相似文献   

8.
Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency.Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas-solid flow is essential for the optimization and operation of a chemical looping combustor.Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.  相似文献   

9.
An interconnected multi-phase CFD model is developed capable of describing the transient behavior of a coupled chemical looping combustion systems comprising of both air and fuel reactors. The air reactor is modeled as a high velocity riser, the fuel reactor as a bubbling fluidized bed. The models of both reactors are implemented as separate CFD simulations allowing for an exchange of solid mass through time-dependent inlet and outlet boundary conditions as well as mass, momentum, heat and species sinks. The developed framework is applied to a chemical looping combustion system based on Mn3O4 as carrier material in combination with CH4 as fuel gas. Starting from a base case, different system configurations are investigated. The results indicate clearly that interconnected multi-phase CFD models are well suited for the design process of coupled chemical looping systems.  相似文献   

10.
To demonstrate process feasibility of in situ CO2 capture from combustion of fossil fuels using Ca-based sorbent looping technology, a flexible atmospheric dual fluidized bed combustion system has been constructed. Both reactors have an ID of 100 mm and can be operated at up to 1000 °C at atmospheric pressure. This paper presents preliminary results for a variety of operating conditions, including sorbent looping rate, flue gas stream volume, CaO/CO2 ratio and combustion mode for supplying heat to the sorbent regenerator, including oxy-fuel combustion of biomass and coal with flue gas recirculation to achieve high-concentration CO2 in the off-gas. It is the authors' belief that this study is the first demonstration of this technology using a pilot-scale dual fluidized bed system, with continuous sorbent looping for in situ CO2 capture, albeit at atmospheric pressure. A multi-cycle test was conducted and a high CO2 capture efficiency (> 90%) was achieved for the first several cycles, which decreased to a still acceptable level (> 75%) even after more than 25 cycles. The cyclic sorbent was sampled on-line and showed general agreement with the features observed using a lab-scale thermogravimetric analysis (TGA) apparatus. CO2 capture efficiency decreased with increasing number of sorbent looping cycles as expected, and sorbent attrition was found to be another significant factor to be limiting sorbent performance.  相似文献   

11.
A kinetic theory based hydrodynamic model with experimentally determined sorption rates for reaction of CO2 with K2CO3 solid sorbent is used to design a compact circulating fluidized bed sorption‐regeneration system for CO2 removal from flue gases. Because of high solids fluxes, the sorber does not require internal or external cooling. The output is verified by computing the granular temperatures, particle viscosities, dispersion, and mass transfer coefficients. These properties agree with reported measurement values except the radial dispersion coefficients, which are much higher due to the larger bed diameter. With the solid sorbent prepared according to published information, the CO2 removal percentage at the riser top is 69.16%. To improve the CO2 removal, an effort is needed to develop a better sorbent or to simply lower the inlet gas velocity to operate in a denser mode, leading to a larger system. Also, the effect of temperature rise on the removal efficiency is investigated. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

12.
A CO2 capture process for an integrated gasification combined cycle (IGCC) power plant using the calcium looping cycle was proposed. The CO2 capture process using natural and modified limestone was simulated and investigated with the software package Aspen Plus. It incorporated a fresh feed of sorbent to compensate for the decay in CO2 capture activity during long‐term cycles. The sorbent flow ratios have significant effect on the CO2 capture efficiency and net efficiency of the CO2 capture system. The IGCC power plant, using the modified limestone, exhibits higher CO2 capture efficiency than that using the natural limetone at the same sorbent flow ratios. The system net efficiency using the natural and modified limestones achieves 41.7 % and 43.1 %, respectively, at the CO2 capture efficiency of 90 % without the effect of sulfation.  相似文献   

13.
A bubbling fluidized bed reactor was used to study CO2 capture from flue gas by using a potassium-based solid sorbent, sorbKX35 which was manufactured by the Korea Electric Power Research Institute. A dry sorbent, sorbKX35, consists of K2CO3 for absorption and supporters for mechanical strength. To increase initial CO2 removal, some amount of H2O was absorbed in the sorbent before injecting simulated flue gas. It was possible to achieve 100% CO2 removal for more than 10 minutes at 60°C and a residence time of 2 s with H2O pretreatment. When H2O pretreatment time was long enough to convert K2CO3 of sorbKX35 into K2CO3 · 1.5H2O, CO2 removal was excellent. The results obtained in this study can be used as basic data for designing and operating a large scale CO2 capture process with two fluidized bed reactors. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

14.
A moderate temperature dry circulating fluidized bed flue gas desulfurization (CFB-FGD) process was developed using rapidly hydrated sorbent. This technique has the advantages of low cost, no water consumption, and a valuable dry product CaSO4. To keep the system operation stable, a mass balance model, based on cell model considering flow state, particle abrasion, particle residence time, particle segregation and desulfurization processes, was built to predict the system state and optimize the operating condition. Experimental studies were conducted on a pilot-scale CFB-FGD system with rapidly hydrated sorbent made from CFB circulating ash and lime (circulating ash sorbent) or coal fly ash and lime (coal fly ash sorbent). Calculated results were compared with experimental results and the relative error was less than 10%. The results indicated that feed sorbent mass, feed sorbent size, superficial gas velocity, particle abrasion coefficient and cyclone efficiency had significant influence on the mass balance of CFB system. The circulating ash sorbent was better than the coal fly ash sorbent, for providing higher desulfurization efficiency and being better for the CFB-FGD system to achieve mass balance.  相似文献   

15.
A fluidized bed system combining two circulating fluidized bed reactors is proposed and investigated for chemical looping combustion. Direct hydraulic communication of the two circulating fluidized bed reactors via a fluidized loop seal allows for high rates of global solids circulation and results in a stable solids distribution in the system. A 120 kW fuel power bench scale unit was designed, built, and operated. Experimental results are presented for natural gas as fuel using a nickel‐based oxygen carrier. No carbon was lost to the air reactor under any conditions operated. It is shown from fuel power variations that a turbulent/fast fluidized bed regime in the fuel reactor is advantageous. Despite the relatively low riser heights (air reactor: 4.1 m, fuel reactor: 3.0 m), high CH4 conversion and CO2 yield of up to 98% and 94%, respectively, can be reported for the material tested. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

16.
Sorbent-enhanced/membrane-assisted steam-methane reforming   总被引:1,自引:0,他引:1  
Thermodynamic equilibrium and kinetic reactor models are used to simulate a fluidized bed membrane reactor with in situ or ex situ hydrogen and/or CO2 removal for production of pure hydrogen by steam methane reforming. In the equilibrium model, the membranes and CO2 removal are located in separate vessels downstream of the reformer. As the recycle ratio increases, the overall performance approaches that where membranes are located inside the reactor. Whether located in situ or ex situ, hydrogen removal by membranes and CO2 capture by sorbents both enhance hydrogen production. In the kinetic reactor model, a circulating fluidized bed membrane reformer is coupled with a catalyst/sorbent regenerator. Sorbent enhancement combined with membranes could provide very high hydrogen yields. In addition, since carbonation is exothermic, with its heat of reaction similar in magnitude to the endothermic heat of reaction of the net reforming reactions, sorbent enhancement can provide much of the heat needed in the reformer. The overall heat needed for the process would then be provided in a separate calciner, acting as a sorbent regenerator. While the technology is promising, several practical issues need to be examined.  相似文献   

17.
A modeling tool for the investigation of chemical looping combustion (CLC) in a dual circulating fluidized bed (DCFB) reactor system is introduced. CLC is a novel combustion process with inherent CO2 separation, consisting of two fluidized bed reactors, an air reactor (AR) and a fuel reactor (FR). A solid oxygen carrier (OC) that circulates between the reactors, transports the necessary oxygen for the combustion. In the DCFB concept both AR and FR are designed as circulating fluidized beds (CFBs). Each CFB is modeled using a very simple structure in which the reacting gas is only in contact with a defined fraction of the well mixed solids. The solids distribution along the height axis is defined by a void fraction profile. Different parameters that characterize the gas-solids contact are merged into only one parameter: the fraction of solids exposed to the gas passing in plug flow (φs,core). Using this model, the performance of the 120 kW DCFB chemical looping combustor at Vienna University of Technology is investigated. This pilot rig is designed for a Ni-based OC and natural gas as fuel. The influence of the reactor temperatures, solids circulation rate, air/fuel ratio and fuel power are determined. Furthermore, it is shown that with the applied kinetics data, the OC is only fully oxidized in the AR when the AR solids inventory is much larger than the FR solids inventory or when both reactors are very large. To compare different reactor systems, the effect of the solids distribution between AR and FR is studied and both gas and solids conversions are reported.  相似文献   

18.
In recent years several processes incorporating a carbonation-calcination loop in an interconnected fluidized bed reactor have been proposed as a way to capture CO2 from flue gases. This paper is a first approximation to the modelling of a fluidized bed carbonator reactor. In this reactor the flue gas comes into contact with an active bed composed of particles with very different activities, depending on their residence time in the bed and in the carbonation-calcination loop. The model combines the residence time distribution functions with existing knowledge about sorbent deactivation rates and sorbent reactivity. The fluid dynamics of the solids (CSTR) and gases (PF) in the carbonator are based on simple assumptions. The carbonation rates are modelled defining a characteristic time for the transition between a fast reaction regime to a regime with a zero reaction rate. On the basis of these assumptions the model is able to predict the CO2 capture efficiency for the flue gas depending on the operating and design conditions. Operating windows with high capture efficiencies are discussed, as well as those conditions where only modest capture efficiencies are possible.  相似文献   

19.
Circulating fluidized bed adsorber (CFBA) technology is regarded as a potentially effective method for simultaneously controlling emissions of sulfur dioxide, fine particulate matter, and trace heavy metals, such as mercury vapor. In order to analyze CFBA systems in detail, a gas mixture/solids mixture model based on the three-dimensional Navier-Stokes equations is developed for particle flow, agglomeration, physical and chemical adsorption in a circulating fluidized bed. The solids mixture consists of two solids, one with components of CaO and CaSO4, and the other being an activated carbon. The gas mixture is composed of fine particulate matter (PM), sulfur dioxide, mercury vapor, oxygen and inert gas. Source terms representing fine particulate matter agglomeration onto sorbent particles, sulfur dioxide removal through chemical adsorption onto calcined lime, and mercury vapor removal through physical adsorption onto activated carbon are formulated and included into the model. The governing equations are solved using high-resolution upwind-differencing methods, combined with a time-derivative preconditioning method for efficient time-integration. Numerical simulations of bench-scale operation of a prototype CFBA reactor for multi-pollutant control are described.  相似文献   

20.
A. Abad  T. Mattisson  A. Lyngfelt  M. Rydén 《Fuel》2006,85(9):1174-1185
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors. A solid oxygen carrier reacts with the oxygen in air in the air reactor and is then transferred to the fuel reactor, where the fuel gas is oxidized to carbon dioxide and water by the oxygen carrier. Fuel gas and air are never mixed and pure CO2 can easily be obtained from the flue gas exit. The oxygen carrier is recycled between both reactors in a regenerative process. This paper presents the results from a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. The feasibility of the use of a manganese-based oxygen carrier supported on magnesium stabilized zirconia was tested in this work. Natural gas or syngas was used as fuel in the fuel reactor. Fuel flow and air flow was varied, the thermal power was between 100 and 300 W, and the air ratio was between 1.1 and 5.0. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated at all conditions with no signs of agglomeration or deactivation of the oxygen carrier. The same particles were used during 70 h of combustion and the mass loss was 0.038% per hour, although the main quantity was lost in the first hour of operation. In the combustion tests with natural gas, methane was detected in the exit flue gases, while CO and H2 were maintained at low concentrations. Higher temperature or lower fuel flows increases the combustion efficiency, which ranged from 0.88 to 0.99. On the other hand, the combustion of syngas was complete for all experimental conditions, with no CO or H2 present in the gas from the fuel reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号