首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a new small air-cooled double-effect LiBr–H2O absorption prototype directly powered by fuel and discusses the experimental findings for some tests carried out in Madrid in 2007, with natural gas as energy source. The prototype, which has been designed to supply 7 kW of cooling power, was able to chill water up to 7–18 °C under extreme outdoor temperatures. A new flat-sheet adiabatic absorber was used allowing it to operate at outdoor temperatures about 45 °C without any sign of crystallization. A mean daily coefficient of performance (COP) of about 1.05 was obtained. Since this absorption machine does not need cooling tower, there is neither water consumption nor Legionella pollution. Moreover, it is a quite compact unit. The ratio of cooling power over volume is about 6.0 kW/m3, while for the only air-cooled absorption chiller, Rotartica 045v, in the marked until 2009 this ratio is 4 kW/m3. When comparing with electric chillers presently on the market, this prototype was found to have a cooling cost approximately 15.9% higher and an environmental impact 16.7% lower. The absorption prototype is a more environmentally friendly solution as it does not emit fluorinated refrigerants.  相似文献   

2.
The objective of this paper is to experimentally determine the efficiency and viability of the performance of an advanced trigeneration system that consists of a micro gas turbine in which the exhaust gases heat hot thermal oil to produce cooling with an air cooled absorption chiller and hot water for heating and DHW. The micro gas turbine with a net power of 28 kW produces around 60 kW of heat to drive an ammonia/water air-cooled absorption chiller with a rated capacity of 17 kW. The trigeneration system was tested in different operating conditions by varying the output power of the micro gas turbine, the ambient temperature for the absorption unit, the chilled water outlet temperature and the thermal oil inlet temperature. The modelling performance of the trigeneration system and the electrical modelling of the micro gas turbine are presented and compared with experimental results. Finally, the primary energy saving and the economic analysis show the advantages and drawbacks of this trigeneration configuration.  相似文献   

3.
This paper presents dynamic behavior and simulation results in a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage. The hybrid system consists of a 195 kW wind turbine, an 85 kW solar array; a 230 kW microturbine and a 2.14 kAh lead acid battery pack optimized based on economic analysis using genetic algorithm (GA). At first, a developed Lyapunov model reference adaptive feedback linearization method accompanied by an indirect space vector control is applied for extraction of maximum energy from a variable speed wind power generation system. Then, a fuzzy logic controller is designed for the mentioned purpose and its performance is compared with the proposed adaptive controller. For meeting more load demands, the solar array is integrated with the wind turbine. In addition, the microturbine and the battery storage are combined with the wind and solar power generation system as a backup to satisfy the load demand under all conditions.A supervisory controller is designed in order to manage energy between the maximum energy captured from the wind turbine/solar arrays, and consumed energies of the load, dump load, battery state of charge (SOC), and generated energy by the microturbine. Dynamic modeling and simulation are accomplished using MATLAB Simulink? 7.2.  相似文献   

4.
The study presents modelling and analysis of air-cooled chiller system in an office building at Central Queensland University in Rockhampton, Australia. EnergyPlus, building energy simulation software, has been used to model and to simulate the energy savings. Base case cooling energy has been compared with measured data. The simulated results show a reasonable agreement with the measured data. As a passive cooling means, the effect of economiser usages and pre-cooling have been simulated and analysed to assess annual demand savings for an energy intensive office building at Rockhampton, Australia. It was found that implementation of the pre-cooling and economiser system could save 115 kW/m2/month and 72 kW/m2/month total cooling energy and 26 kW/m2/month and 42 kW/m2/month chiller energy, respectively.  相似文献   

5.
A feasibility study on hydrogen production from wind power on the site of Ghardaia is carried out. This study is based on the estimation of the hydrogen rate produced by a 5 kW electrolyser fed by the electricity provided by a 10 kW wind turbine.Wind speed data were used to study the monthly variation of the wind power delivered and its variation according to the height of the wind turbine tower.The obtained results show that it is possible to improve the system output by increasing the height of the wind turbine tower. Indeed, it has been obtained 3200 Nm3 of hydrogen production for a 30 m wind turbine height and 4200 Nm3 at 60 m.In addition, it has been noticed that hydrogen production varies strongly with the months of the year. Thus, the production has reached a maximum of 395 Nm3 in May and a minimum of 187 Nm3 during November and October.  相似文献   

6.
The purpose of this survey is about to investigate wind energy potential of Celal Bayar University Muradiye Campus. The experimental system was commissioned in November 2006 and performance monitoring tests have been conducted since then. Author also undertake a case study to investigate how varying wind speeds considered affect the electricity production of the wind turbine system and to estimate a capacity factor which is defined as the ratio of the average power output to the rated output power of the generator. The collected data are quantified and illustrated in the tables, 07th of November 2006 till 09st of December 2007 for comparison purposes. According to experimental studies between 2006 and 2007 years, yearly average wind velocity is found to be 3.21 m/s at 30 m height and capacity factor is estimated to be 14.1% for Enercon E48 (800 kW) wind turbine. According to these results, the mean wind speed does not provide economical electricity production from the wind energy.  相似文献   

7.
The paper reports on experimental results of an energetic characterization of a cogenerative plant. The generator is a microturbine Turbec T100-CHP integrated in a heat recovery system. For operation in standard conditions the maximum electrical and thermal power generated are, respectively, 105 and 167 kW. Experimental tests were run by varying the electrical power produced between 50 and 110 kW with 10 kW stepping. For each step the set-point of the water temperature at the outlet of the recuperator was varied in the range 60–80 °C with 5 °C stepping. In every operating condition the measurement system allows the real-time calculation of the quantities needed for the energetic characterization of the plant, such as efficiency indices and PES (primary energy saving index). It is seen that performances remain essentially constant in the range 80–110 kW. A moderate decrease is then observed until about 60 kW, while a further reduction of the electrical power implies a clear worsening (PES decreases from about 30% to 16% in the tested range). Furthermore, environmental impact has been investigated with respect to gaseous and acoustic emissions. In particular the concentration of pollutants in exhaust gases, except for NOx and CO2, strongly increases by reducing the electrical power output.  相似文献   

8.
In this paper, a solar-powered compound system for heating and cooling was designed and constructed in a golf course in Taiwan. An integrated, two-bed, closed-type adsorption chiller was developed in the Industrial Technology Research Institute in Taiwan. Plate fin and tube heat exchangers were adopted as an adsorber and evaporator/condenser. Some test runs have been conducted in the laboratory. Under the test conditions of 80 °C hot water, 30 °C cooling water, and 14 °C chilled water inlet temperatures, a cooling power of 9 kW and a COP (coefficient of performance for cooling) of 0.37 can be achieved. It has provided a SCP (specific cooling power) of about 72 W/(kg adsorbent). Some field tests have been performed from July to October 2006 for providing air-conditioning and hot water. The efficiency of the collector field lies in 18.5–32.4%, with an average value of 27.3%. The daily average COP of the adsorption chiller lies in 33.8–49.7%, with an average COP of 40.3% and an average cooling power of 7.79 kW. A typical daily operation shows that the efficiency of the solar heating system, the adsorption cooling and the entirely solar cooling system is 28.4%, 45.2%, and 12.8%, respectively.  相似文献   

9.
An attempt has been made, may be first time in Saudi Arabia, to utilize power of the wind for pumping the water for remotely located inhabitants not connected with national power grid. Small turbines of 1–10 kW have been chosen in conjunction with Goulds 45 J model water pumps to produce energy from wind and pump water using the produced energy at Arar, Rawdat Ben Habbas and Juaymah localities in Saudi Arabia. Wind speed measurements made at different heights using 40 m tall towers have been utilized in the present work. Higher wind speeds were noticed during summer time compared to winter time at all the locations. Both energy yield and cost of energy point of view, 2.5 kW wind turbine from Proven was found to be most suitable for wind power generation at all sites. It is shown that annual total water pumping capacity of 30,000 m3 is possible from a depth of total dynamic head of 50 m when using 2.5 kW Proven wind turbine with hub heights 15–40 m at all three sites with cost of water pumping as low as 1.28 US¢/m3.  相似文献   

10.
In this study, performance assessment of an integrated cooling plant having both free cooling system and solar powered single-effect lithium bromide–water absorption chiller in operation since August 2002 in Oberhausen, Germany, was performed. A floor space of 270 m2 is air-conditioned by the plant. The plant includes 35.17 kW cooling (10-RT) absorption chiller, vacuum tube collectors’ aperture area of 108 m2, hot water storage capacity of 6.8 m3, cold water storage capacity of 1.5 m3 and a 134 kW cooling tower. The results show that free cooling in some cooling months can be up to 70% while it is about 25% during the 5 years period of the plant operation. For sunny clear sky days with equal incident solar radiation, the daily solar heat fraction ranged from 0.33 to 0.41, collectors’ field efficiency ranged from 0.352 to 0.492 and chiller COP varies from 0.37 to 0.81, respectively. The monthly average value of solar heat fraction varies from 31.1% up to 100% and the five years average value of about 60%. The monthly average collectors’ field efficiency value varies from 34.1% up 41.8% and the five-year average value amounts about 28.3%. Based on the obtained results, the specific collector area is 4.23 (m2/kWcold) and the solar energy system support of the institute heating system for the duration from August 2002 to November 2007 is 8124 kWh.  相似文献   

11.
This work presents a comprehensive chiller model based on the scientific fundamentals and engineering principles adapted to the design of a chiller and to the analysis of extensive, detailed test data. The chiller studied is a 16 kW (4.6 refrigerant tons) LiBr–H2O double-effect absorption chiller, which has been installed and tested in a Micro Building Cooling Heating and Power (BCHP) system at Carnegie Mellon University. The developed steady-state computational performance model for the chiller has been refined by measured data from absorption chiller tests under various conditions, and used to analyze chiller performance and to improve the chiller design.  相似文献   

12.
《Energy Conversion and Management》2005,46(15-16):2501-2513
In view of rising costs, pollution and fears of exhaustion of oil and coal, governments around the world are encouraging to seek energy from renewable/sustainable energy sources such as wind. The utilization of energy from wind (since the oil embargo of the 1970s) is being widely disseminated for displacement of fossil fuel produced energy and to reduce atmospheric degradation. A system that consists of a wind turbine and Diesel genset is called a Wind–Diesel power system.The literature indicates that the commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present study, the hourly mean wind-speed data of the period 1986–1997 recorded at the solar radiation and meteorological station, Dhahran (26°32′N, 50°13′E in the Eastern Coastal Region of Saudi Arabia), has been analyzed to investigate the potential of utilizing hybrid (Wind–Diesel) energy conversion systems to meet the load requirements of a hundred typical two bedroom residential buildings (with annual electrical energy demand of 3512 MWh). The long term monthly average wind speeds for Dhahran range from 4.2 to 6.4 m/s. The hybrid systems considered in the present case study consist of different combinations/clusters of 150 kW commercial wind machines supplemented with battery storage and Diesel back-up. The deficit energy generated by the Diesel generator (for different battery capacities) and the number of operational hours of the Diesel system to meet a specific annual electrical energy demand of 3512 MWh have also been presented. The evaluation of the hybrid system shows that with seven 150 kW wind energy conversion system (WECS) and one day of battery storage, the Diesel back-up system has to provide 21.6% of the load demand. Furthermore, with three days of battery storage, the Diesel back-up system has to provide 17.5% of the load demand. However, in the absence of battery storage, about 37% of the load needs to be provided by the Diesel system. The study also places emphasis on the monthly average daily energy generation from different sizes (150 kW, 250 kW, 600 kW) of wind machines to identify the optimum wind machine size from the energy production point of view. It has been noted that for a given 6 MW wind farm size (for 50 m hub height), a cluster of forty 150 kW wind machines yields about 48% more energy as compared to a cluster of ten 600 kW wind machines.  相似文献   

13.
A low-grade waste heat driven solid/vapour adsorption chiller has been successfully designed and tested. A simple model was developed to aid the design and predict the performances. The system comprised two identical sorption reactors operating out of phase in order to ensure continuous cold production. One sorption reactor consisted of six commercially available automotive plate/fin heat exchangers in which silica gel grains were accommodated between the fins. The system was tested as to the power delivered at 12 °C and the power density. The average cooling power was 3.6 kW. This is only 72% of the design value and can be largely attributed to the lower heat transfer fluid flow rate through the sorbent reactor. The thermal efficiency, COP, was 0.62 and the power density was 17 kW/m3 for the system as a whole. Higher power densities are possible. At present, the adsorption chiller is integrated in a prototype trigeneration system, which is tested at CRF’s Eco-building in Turin.  相似文献   

14.
Traveling-wave thermoacoustic electricity generator is a new external-combustion type device capable of converting heat such as solar energy into electric power. In this paper, a 1 kW solar-powered traveling-wave thermoacoustic electricity generation system is designed and fabricated. The system consists of a traveling-wave thermoacoustic electricity generator, a solar dish collector and a heat receiver. In the preliminary tests, using electric cartridge heaters to simulate the solar energy, a maximum electric power of 481 W and a maximum thermal-to-electric efficiency of 15.0% were achieved with 3.5 MPa pressurized helium and 74 Hz working frequency. Then, after integrating the traveling-wave thermoacoustic electricity generator with the solar dish collector and the heat receiver, the solar-powered experiments were performed. In the experiments, a maximum electric power of about 200 W was obtained. However, due to the solar dish collector problems, the heating temperature of the receiver was much lower than expected. Optimizations of the collector and the heat receiver are under way.  相似文献   

15.
The study was conducted to determine the consequences of a carbon tax, equal to an estimated social cost of carbon of $37.2/Mg, on household electricity cost, and to determine if a carbon tax would be sufficient to incentivize households to install either a grid-tied solar or wind system. U.S. Department of Energy hourly residential profiles for five locations, 20 years of hourly weather data, prevailing electricity pricing rate schedules, and purchase prices and solar panel and wind turbine power output response functions, were used to address the objectives. Two commercially available household solar panels (4 kW, 12 kW), two wind turbines (6 kW, 12 kW), and two price rate structures (traditional meter, smart meter) were considered. Averaged across the five households, the carbon tax is expected to reduce annual consumption by 4.4% (552 kWh/year) for traditional meter households and by 4.9% (611 kWh/year) for households charged smart meter rates. The carbon tax increases electricity cost by 19% ($202/year). For a household cost of $202/year the carbon tax is expected to reduce social costs by $11. Annual carbon tax collections of $234/household are expected. Adding the carbon tax was found to be insufficient to incentivize households to install either a solar panel or wind turbine system. Installation of a 4 kW solar system would increase the annual cost by $1546 (247%) and decrease CO2 emissions by 38% (2526 kg) valued at $94/household. The consequence of a carbon tax would depend largely on how the proceeds of the tax are used.  相似文献   

16.
This study presents newly developed charts to aid in early design of impulse turbine for wave energy extraction. These charts, based on the available experimental data, represent a simple approach to the performance evaluation of the turbine. The novel approach is applied in a case study that considers the optimum diameter design selection of next-generation impulse turbine power take-off. This allowed the selection of the correct impulse turbine sizing for a required rated power. The result is consistent for such an application, where the optimum rotor diameter would be 1.6 m for a maximum rated power of 400 kW.  相似文献   

17.
Analysis of the wind characteristics in Ras Benas city located on the east coast of Red Sea in Egypt using measured data (wind, pressure and temperature) and Weibull function were made.Statistical analysis model to evaluate the wind energy potential was introduced. According to the power calculations done for the site, the annual mean wind density is 315 kW/m2 at a height of 70 m above ground level. This station has a huge wind energy potential for electricity generation, especially during spring and summer seasons, comparing with some European countries.In addition, the monthly wind turbine efficiency parameter (ηmonthly) has been calculated by using a commercial wind turbine 1 MW with 70 m hub height to help designers and users in evaluating the potentialities and choosing the suitable wind turbine for the considered site. The use of wind turbine with capacity greater than 1000 kW at this station was recommended.Ras Benas station was selected to install 30 MW-wind farm consists of 20 commercial wind turbines (Nordex S 77) with hub heights and Rotor diameter were 100 and 77 m, respectively. This site has annual wind speed more than 9.8 m/s at 100 m height and enough area to locate these turbines.The estimated energy production using WASP Program of these wind farm was 130 GWh/year. Furthermore, the production costs was found 1.3€ cent/kWh, which is a competition price at the wind energy world market.  相似文献   

18.
Nova Scotia, Canada's community feed-in tariff (COMFIT) scheme is the world's first feed-in tariff program specifically targeting locally-based renewable energy projects. This study investigated selected turbine capacities to optimize electricity production, based on actual wind profiles for three sites in Nova Scotia, Canada (i.e., Sydney, Caribou Point, and Greenwood). The turbine capacities evaluated are also eligible under the current COMFIT-large scheme in Nova Scotia, including 100 kW, 900 kW and 2.0 MW turbines. A capital budgeting model was developed and then used to evaluate investment decisions on wind power production. Wind duration curves suggest that Caribou Point had the highest average wind speeds but for shorter durations. By comparison, Sydney and Greenwood had lower average wind speeds but with longer durations. Electricity production cost was lowest for the 2.0 MW turbine in Caribou Point ($0.07 per kWh), and highest for the 100 kW turbine located in Greenwood ($0.49 per kWh). The most financially viable wind power project was the 2.0 MW turbine assumed to operate at 80 m hub height in Caribou Point, with NPV=$251,586, and BCR=1.51. Wind power production for the remaining two sites was generally not financially feasible for the turbine capacities considered. The impact of promoting local economic development from wind power projects was higher in a scenario under which wind turbines were clustered at a single site with the highest wind resources than generating a similar level of electricity by distributing the wind turbines across multiple locations.  相似文献   

19.
Current in solar chimney power plant that drives turbine generators to generate electricity is driven by buoyancy resulting from higher temperature than the surroundings at different heights. In this paper, the maximum chimney height for convection avoiding negative buoyancy at the latter chimney and the optimal chimney height for maximum power output are presented and analyzed using a theoretical model validated with the measurements of the only one prototype in Manzanares. The results based on the Manzanares prototype show that as standard lapse rate of atmospheric temperature is used, the maximum power output of 102.2 kW is obtained for the optimal chimney height of 615 m, which is lower than the maximum chimney height with a power output of 92.3 kW. Sensitivity analyses are also performed to examine the influence of various lapse rates of atmospheric temperatures and collector radii on maximum height of chimney. The results show that maximum height gradually increases with the lapse rate increasing and go to infinity at a value of around 0.0098 K m?1, and that the maximum height for convection and optimal height for maximum power output increase with larger collector radius.  相似文献   

20.
Despite its attractiveness, solar cooling technology is still in an early stage of development. Most installations currently in operation show differences in the collector area per kilowatt of cooling capacity that cannot be explained only by project-specific circumstances. The purpose of this paper was twofold. First, to answer some questions that came up during the design process of the plant by using a TRNSYS system model and statistical tools. Second, to gain knowledge about the plant operation and validate the TRNSYS model through measured data. The system was equipped with a flat-plate collector field of 38.4 m2. A lithium bromide-water single-effect absorption chiller (17.6 kW) was selected in order to provide chilled water to fan-coils. Performance data were registered at the solar plant working with a 1000-l heat storage tank and a required temperature of 80 °C to drive the absorption machine. An average of 29% of the solar energy incident on the solar collectors’ surface was transferred to the hot water storage. The registered average COP of the absorption chiller was 0.691. The performance data were compared with the values predicted by the TRNSYS plant model and a high level of agreement was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号