首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims to disclose the densification mechanism and grain growth behaviors during the spark plasma sintering (SPS) of undoped TiCN powder. The SPS experiments were performed under temperatures ranging from 1600 °C to 2200 °C and a fixed pressure of 50 MPa. The sintering mechanisms were described in different models according to two grain growth behaviors: densification without grain growth at low temperatures (1600–1700 °C) and grain growth without apparent densification at higher temperatures (1800–2200 °C). At the constant grain stage, a creep model is applied to describe the densification process. In addition, the effective stress exponents, n, are calculated, indicating that the densification can be attributed to both grain boundary sliding (n = 1.5) and dislocation climbing (n = 3.13 or n = 4.29). During the second stage of sintering, the grain growth model reveals that the grain-growth is controlled by grain boundary diffusion. In addition, the Vickers hardness varies from 4326 Hv to 6762 Hv when the density ranges from 90% to 96.3%.  相似文献   

2.
A commercially available granulated TZ3Y powder has been sintered by hot-pressing (HP). The “grain size/relative density” relationship, referred to here as the “sintering path”, has been established for a constant value of the heating rate (25 °C min?1) and a constant value of the macroscopic applied pressure (100 MPa). It has then been compared to that obtained previously on the same powder but sintered by spark plasma sintering (SPS, heating rate of 50 °C min?1, same applied macroscopic pressure). By coupling the analysis of a sintering law (derived from creep rate equations) and comparative observations of sintered samples using transmission electron microscopy, a hypothesis about the densification mechanism(s) involved in SPS and HP has been proposed. Slight differences in the densification mechanisms lead to scars in the microstructure that explain the higher total ionic conductivity measured, in the temperature range 300–550 °C, when SPS is used for sintering.  相似文献   

3.
Nano-sized zirconium carbide powder was synthesized at 1600 °C by the carbothermal reduction of ZrO2 using a modified spark plasma sintering (SPS) apparatus. The synthesized ZrC powder had a fine particle size of approximately 189 nm and a low oxygen content of 0.88 wt%. The metal basis purity of the synthesized powder was 99.87%. The low synthesis temperature, fast heating/cooling rate and the effect of current during the modified SPS process effectively suppressed the particle growth. Using the synthesized powder, monolithic ZrC ceramics with high relative density (97.14%) were obtained after the densification at 2100 °C for 30 min at a pressure of 80 MPa by SPS. The average grain size of the densified ZrC ceramics was approximately 9.12 μm.  相似文献   

4.
The densification of Ti3SiC2 MAX phase was performed by the Spark Plasma Sintering (SPS) technique. The SPS parameters, such as sintering temperature, pressure and soaking time, were optimized to obtain fully densified samples which were characterized to obtain the best mechanical properties. The sintering temperature was varied from 1070 to 1300 °C, the soaking time from 1 to 10 min and the applied pressure from 60 to 180 MPa. The best full densified samples were sintered at 1300 °C applying 60 MPa for 7 min. TixCy and TiSi2 secondary phases were found in samples densified at 1200, 1250 and 1300 °C, due to decomposition of Ti3SiC2. These secondary phases, detected by XRD patterns, were confirmed by microhardness testing, FESEM observations and EDAX analyses.  相似文献   

5.
In order to improve the recrystallization resistance and the mechanical properties of molybdenum, TiC particle-reinforcement composites were sintered by SPS. Powders with TiC contents between 6 and 25 vol.% were prepared by high energy ball milling. All powders were sintered both at 1600 and 1800 °C, some of sintered composites were annealed in hydrogen for 10 h at 1100 up to 1500 °C. The powders and the composites were investigated by scanning electron microscopy and XRD. The microhardness and the density of composites were measured, and the densification behavior was investigated. It turns out that SPS produces Mo–TiC composites, with relative densities higher than 97%.The densification behavior and the microhardness of all bulk specimens depend on both the ball milling conditions of powder preparation and the TiC content. The highest microhardness was obtained in composites containing 25 vol.% TiC sintered from the strongest milled powders. The TiC particles prevent recrystallization and grain growth of molybdenum during sintering and also during annealing up to 10 h at 1300 °C. Interdiffusion between molybdenum and carbide particles leads to a solid solution transition zone consisting of (Ti1 x Mox)Cy carbide. This diffusion zone improves the bonding between molybdenum matrix and TiC particles. A new phase, the hexagonal Mo2C carbide, was detected by XRD measurements after sintering. Obviously, this phase precipitates during cooling from sintering temperature, if (Ti1 x Mox)Cy or molybdenum, are supersaturated with carbon.  相似文献   

6.
Creep behaviour of a new cast air-hardenable intermetallic Ti–46Al–8Ta (at.%) alloy was investigated. Constant load tensile creep tests were performed at initial applied stresses ranging from 200 to 400 MPa in the temperature range from 973 to 1073 K. The minimum creep rate is found to depend strongly on the applied stress and temperature. The power law stress exponent of the minimum creep rate is n = 5.8 and the apparent activation energy for creep is calculated to be Qa = (382.9 ± 14.5) kJ/mol. The kinetics of creep deformation of the specimens tested to a minimum creep rate (creep deformation about 2%) is suggested to be controlled by non-conservative motion of dislocations in the γ(TiAl) matrix. Besides dislocation mechanisms, deformation twinning contributes significantly to overall measured strains in the specimens tested to fracture. The initial γ(TiAl) + α2(Ti3Al) microstructure of the creep specimens is unstable and transforms to the γ + α2 + τ type during creep. The particles of the τ phase are preferentially formed along the grain and lamellar colony boundaries.  相似文献   

7.
A bulk nanostructured alloy with the nominal composition Cu–30Zn–0.8Al wt.% (commercial designation brass 260) was fabricated by cryomilling of brass powders and subsequent spark plasma sintering (SPS) of the cryomilled powders, yielding a compressive yield strength of 950 MPa, which is significantly higher than the yield strength of commercial brass 260 alloys (~200–400 MPa). Transmission electron microscopy investigations revealed that cryomilling results in an average grain diameter of 26 nm and a high density of deformation twins. Nearly fully dense bulk samples were obtained after SPS of cryomilled powders, with average grain diameter 110 nm. After SPS, 10 vol.% of twins is retained with average twin thickness 30 nm. Three-dimensional atom-probe tomography studies demonstrate that the distribution of Al is highly inhomogeneous in the sintered bulk samples, and Al-containing precipitates including Al(Cu,Zn)–O–N, Al–O–N and Al–N are distributed in the matrix. The precipitates have an average diameter of 1.7 nm and a volume fraction of 0.39%. Quantitative calculations were performed for different strengthening contributions in the sintered bulk samples, including grain boundary, twin boundary, precipitate, dislocation and solid-solution strengthening. Results from the analyses demonstrate that precipitate and grain boundary strengthening are the dominant strengthening mechanisms, and the calculated overall yield strength is in reasonable agreement with the experimentally determined compressive yield strength.  相似文献   

8.
Well-aligned Mo fiber-reinforced NiAl in situ composites were produced by specially controlled directional solidification. The creep behavior parallel to the growth direction was studied in static tensile tests at temperatures between 900 °C and 1200 °C. A steady-state creep rate of 10?6 s?1 was measured at 1100 °C under an initial applied tensile stress of 150 MPa. Compared to binary NiAl and previously investigated NiAl–Mo eutectics with irregularly oriented Mo fibers, this value demonstrates a remarkably improved creep resistance in NiAl–Mo with well-aligned unidirectional Mo fibers. A high-resolution transmission electron microscope investigation of the NiAl/Mo interface revealed a clean semi-coherent boundary between NiAl and Mo, which enabled an effective load transfer from the NiAl matrix to the Mo fibers, and thus leads to the remarkably increased creep strength. The stress exponent, n, was found to be between 3.5 and 5, dependent on temperature. The activation energy for creep, Qc, was measured to be 291 ± 19 kJ mol–1, which is close to the value for self-diffusion in binary NiAl. Transmission electron microscopy observations substantiated that creep occurred by dislocation climb in the NiAl matrix. The Mo fiber was found to behave in a quasi-rigid manner during creep. A creep model for fiber-reinforced metal matrix composites was applied for an in-depth understanding of the mechanical behavior of the individual components and their contribution to the creep strength of the composite.  相似文献   

9.
Spark plasma sintering (SPS) experiments were conducted to investigate the effect of the processing parameters such as temperature, mechanical pressure and dwell time on densification behavior of monolithic chromium diboride. The sintering experiments were performed at different temperatures ranging from 1100 °C to 1900 °C under the mechanical pressure of 30 MPa–70 MPa for 1 min–15 min duration. The onset temperature for the densification of CrB2 is observed to be 1300 °C at 50 MPa. High dense chromium diboride (98.4%ρth) compact was obtained when processed at 1900 °C under a mechanical pressure of 70 MPa for 15 min duration. Hardness and fracture toughness of high density monolithic CrB2 (98.4%ρth) sample were measured to be 15.89 ± 1.3 GPa and 1.8 ± 0.14 MPa·m1/2 respectively.  相似文献   

10.
The sintering behavior of Al2O3-NbC nanocomposites fabricated via conventional and spark plasma sintering (SPS) was investigated. The nanometric powders of NbC were prepared by reactive high-energy milling, deagglomerated, leached with acid, added to the Al2O3 matrix in the proportion of 5 vol% and dried under airflow. Then, the nanocomposite powders were densified at different temperatures, 1450–1600 °C. Effect of sintering temperature on the microstructure and mechanical properties such as hardness, toughness and bending strength were analyzed. The Al2O3-NbC nanocomposites obtained by SPS show full density and maximum hardness value > 25 GPa and bending strength of 532 MPa at 1500 °C. Microstructure observations indicate that NbC nanoparticles are dispersed homogeneously within Al2O3 matrix and limit their grain growth. Scanning electron microscopy examination of the fracture surfaces of dense samples obtained at 1600 °C by SPS revealed partial melting of the particle surfaces due to the discharge effect.  相似文献   

11.
SiC–B4C–Al cermets containing 5, 10 and 20 wt.% of Al were fabricated by high-energy planetary milling followed by conventional sintering and spark plasma sintering (SPS) techniques separately. The average particle size reduced to ~ 3 μm from an initial size of 45 μm after 10 h of milling. The as-milled powders were conventionally sintered at 1950 °C for 30 min under argon atmosphere and SPS was carried out at 1300 °C for 5 min under 50 MPa applied pressure. The formation of Al8B4C7 and AlB12 phases during conventional sintering and SPS were confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. The formation of Al8B4C7 at 700 °C and AlB12 at 1000 °C was well supported by XRD and differential scanning calorimetry (DSC). The maximum relative density, microhardness and indentation fracture resistance of SiC–B4C–10Al consolidated by SPS are 97%, 23.80 GPa and 3.28 MPa·m1/2, respectively.  相似文献   

12.
Understanding the microstructure of W–Cu nanocomposite powder is essential for elucidating its sintering mechanism. In this study, the effect of milling time on the structural characteristics and densification behavior of W-Cu composite powders synthesized from WO3-CuO powder mixtures was investigated. The mixture of WO3 and CuO powders was ball-milled in a bead mill for 1 h and 10 h followed by reduction by heat-treating the mixture at 800 °C in H2 atmosphere with a heating rate of 2 °C/min to produce W-Cu composite powder. The microstructure analysis of the reduced powder obtained by milling for 1 h revealed the formation of W–Cu powder consisting of W nanoparticle-attached Cu microparticles. However, Cu-coated W nanocomposite powder consisting of W nanoparticles coated with a Cu layer was formed when the mixture was milled for 10 h. Cu-coated W nanopowder exhibited an excellent sinterability not only in the solid-phase sintering stage (SPS) but also in the liquid-phase sintering stage (LPS). A high relative sintered density of 96.0% was obtained at 1050 °C with a full densification occurring on sintering the sample at 1100 °C. The 1 h-milled W-Cu powder exhibited a high sinterability only in the LPS stage to achieve a nearly full densification at 1200 °C.  相似文献   

13.
The gamma surfaces in the pyramidal I {1 ?1 0 1} and II {1 1?2 2} planes for hexagonal close packed Mg have been calculated using two embedded-atom-method potentials and by ab initio methods, and reasonable agreement is obtained for key stacking fault energies. Screw and edge 〈c + a〉 dislocation core structures and Peierls stresses at 0 K and finite temperature have been examined using the embedded-atom-method potentials. Screw 〈c + a〉 dislocations glide in the {1 ?1 0 1} pyramidal plane I, and in the prism plane for larger stresses, but not in the {1 1 ?2 2} plane as observed in experiments. However, the preference for pyramidal I glide correlates well with the gamma surfaces. New low energy edge 〈c + a〉 dislocation cores were found in addition to the sessile Type I and Type III cores observed in previous simulations while the Type II core was not observed. The lowest energy core is a glissile core that lies in the {1 1 ?2 2} plane and has a 3 nm long {1 1 ?2 1} twin embryo, rather than the sessile Type III core found in previous simulations. As the temperature increases from 0 to 300 K, the Peierls stresses in compression/tension drop from ?80 MPa/+140 MPa and ?140 MPa/+220 MPa for the most glissile screw and edge dislocations to ?5/+2.5 MPa and ?27/+5 MPa, and dislocation glide changes from kink motion to face-centered-cubic-like motion. At 300 K and under an applied stress, almost all the edge cores found at low temperature transform into a glissile core denoted IT, which glides at low stresses. Thus, at 300 K both screw and edge 〈c + a〉 dislocations were found to glide at stresses smaller than the ~40 MPa measured experimentally.  相似文献   

14.
TZM alloy is one of the most important molybdenum (Mo) based alloy which has a nominal composition containing 0.5–0.8 wt.% titanium (Ti), 0.08–0.1 wt.% zirconium (Zr) and 0.016–0.02 wt.% carbon (C). It is a possible candidate for high temperature applications in a variety of industries. However, the rapid oxidation of TZM alloys at high temperature in air is considered to be one of the drawback. In this study, TZM alloys with additions of 0–5 wt.% B4C were prepared by spark plasma sintering (SPS) at 1420 °C utilizing 40 MPa pressure for 5 min under vacuum. The effects of B4C addition on oxidation, densification behavior, microstructure, and mechanical properties were investigated. The TZM alloy with 5 wt.% B4C have exhibited an approximately 66% reduction in mass loss under normal atmospheric conditions in oxidation tests made at 1000 °C for 60 min. And an increase from 1.9 GPa to 7.8 GPa has been determined in hardness of the alloy.  相似文献   

15.
A bulk zirconium–tantalum diboride ceramic composite was consolidated by non-reactive spark plasma sintering (SPS) at 2300 °C. In order to consolidate the ZrB2–44 wt% TaB2 composite and restrict grain-growth, a special loading procedure was used. Pressure was applied and released at 2150 °C and 1250 °C, respectively. These SPS conditions allowed us to obtain a crack-free bulk composite with a grain size of 4–8 μm. Flexural strength at temperatures up to 1800 °C was measured for the ZrB2–TaB2 composite. Importantly, at 1600 °C, the strength was 336 ± 23 MPa, which is superior to that of monolithic ZrB2. Moreover, the ZrB2–TaB2 composite only showed plastic behavior at 1800 °C, a finding that is atypical for ZrB2-based ceramics.  相似文献   

16.
《Acta Materialia》1999,47(8):2357-2365
The rolling, recrystallization and cooling of AgCl containing 1–5 μm glass spheres generates thermal misfit dislocations. Under stress, prismatic loops elongate in the glide cylinder defined by their line sense and Burgers vector. Using optical microscopy, the shape of dislocation loops under an applied stress of 2.3 MPa is measured. The measurements are corrected for a friction stress of 0.34 MPa and compared with a model which incorporates the orientation dependent line tension (ODLT) of a dislocation. The measured data show considerable scatter; after averaging, good agreement between theory and experiment is obtained.  相似文献   

17.
Magnetic properties of (Fe0.72B0.24Nb0.04)95.5Y4.5 sample were investigated. The sample was produced from glassy powders made by the gas-atomization and consolidation using the spark plasma sintering (SPS) technique. Maximum relative density of 99.5% was achieved in the spark plasma sintered (SPSed) compact due to the viscous flow enhanced by the applied stress even under the glass transition temperature. X-ray diffraction pattern of the compact indicates that the glassy structure was maintained through the SPS process. However, the results of differential scanning calorimetry (DSC) showed that the glass transition temperature and crystallization temperature of the SPSed glassy compact shift to a higher and lower temperature, respectively, that is, a smaller ΔTx. Saturation magnetization of the SPSed glassy compact became 10% higher than that of the initial glassy powder. The Curie point was enhanced from 522 K for the glassy powder to 548 K for the SPSed glassy compact. Spin-exchange interaction is expected to be enhanced by a short-range scale atomic rearrangement caused by the high applied stress and temperature during the SPS process.  相似文献   

18.
The densification and grain growth behaviors for micron- and nano-sized ZrB2 particles were investigated. The densification on-set temperature (Td-micron) and grain growth on-set temperature (Tg-micron) for micron-sized ZrB2 particles were about 1500 °C and 1800 °C, respectively. And the densification on-set temperature (Td-nano) and grain growth on-set temperature (Tg-nano) for nano-sized ZrB2 particles were about 1300 °C and 1500 °C, respectively. A bimodal micron/nano-ZrB2 ceramic was therefore prepared using a novel two-step hot pressing. A high relative density of 99.2%, an improved flexural strength of 580.2 ± 35.8 MPa and an improved fracture toughness of 7.2 ± 0.4 MPa·m1/2 were obtained. The measured critical thermal shock temperature difference (ΔTc) for this bimodal micron/nano-ZrB2 ceramic was as high as 433 °C.  相似文献   

19.
《Acta Materialia》2007,55(10):3493-3504
Spark plasma sintering (SPS) of a commercially available granulated zirconia powder has been investigated. The “relative density/grain size” trajectory, or “sintering path”, has been established for a constant heating rate (50 °C/min) and a constant applied pressure (100 MPa). In addition, an attempt has been made to identify the mechanism(s) that could be invoked for the control of densification during the SPS experiments.  相似文献   

20.
The influence of boron additions and different oxygen contamination levels on the microstructure and the mechanical properties in the Ti66?xNb13Cu8Ni6.8Al6.2Bx (0 ? x ? 1) system were investigated. The alloys were prepared by levitation copper mould casting as rods with a diameter of 5 mm using different grades of starting elements. The alloy without boron exhibits a maximum compressive stress of more than 2500 MPa, associated with a compressive strain of more than 30%. The ultimate tensile stress is ~1075 MPa with a maximum elongation of 1.6%. Increased oxygen content leads to a rise of yield strength due to solid solution hardening. Boron additions promote grain refinement and reinforce the interdendritic phase compound by forming needle-like TiB precipitates. This change in microstructure increases the yield stress and the Young’s modulus and lowers the plastic strain. The microstructure was analysed in terms of the boron content by means of scanning electron microscopy, Auger electron spectroscopy and transmission electron microscopy. The presented mechanical properties are compared with the compression and tensile properties of the commercially available Ti6Al4V ELI (ELI = extra low interstitial) alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号