首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper deals with the effects of the operating parameters on the cooling performance that can be applied for a transcritical CO2 automotive air conditioning system. The experimental conditions of the performance tests for a CO2 system and components such as a gas cooler and an evaporator were suggested to compare with the performance of each at the standardized test conditions. This research presents experimental results for the performance characteristics of a CO2 automotive air conditioning system with various operating conditions such as different gas cooler inlet pressures, compressor speeds and frontal air temperatures/flow rates passing through the evaporator and the gas cooler. Experimental results show that the cooling capacity was more than 4.9 kW and coefficient of performance (COP) was more than 2.4, at each optimum pressure of gas cooler inlet during idling condition. Also, the cooling capacity was about 7.5 kW and COP was about 1.7 at the optimum pressure of gas cooler inlet during driving condition when air inlet temperatures of gas cooler and evaporator were 45 °C and 35 °C, respectively. Therefore, we concluded that the automotive air conditioning system using CO2 refrigerant has good performance. This paper also deals with the development of optimum high pressure control algorithm for the transcritical CO2 cycle to achieve the maximum COP.  相似文献   

2.
Condensation heat transfer and pressure drop of R22, R410A and R407C were investigated experimentally in two single round stainless steel tubes with inner diameter of 1.088 mm and 1.289 mm. Condensation heat transfer coefficients and two phase pressure drop were measured at the saturation temperatures of 30 °C and 40 °C. The mass flux varies from 300 to 600 kg/m2 s and the vapor quality 0.1–0.9. The effects of mass flux and vapor quality were investigated and the results indicate that condensation heat transfer coefficients increase with mass flux and vapor quality, increasing faster in the high vapor quality region. The experimental data was compared with the correlations based on experimental data from large diameter tubes (dh > 3 mm), such as the Shah and Akers correlations et al. Almost all the correlations overestimated the present experimental data, but Wang correlation and Yan and Lin correlation which were developed based on the experimental data from mini-tubes predicted present data reasonably well. Condensation heat transfer coefficients and two phase pressure drop of R22 and R407C are equivalent but both higher than those of R410A. As a substitute for R22, R410A has more advantages than R407C in view of the characteristics of condensation heat transfer and pressure drop.  相似文献   

3.
In this study, an innovative, evaporative condenser for residential refrigerator was introduced. A vapor compression cycle incorporating the proposed evaporative condenser was tested to evaluate the cycle performance. To allow for evaporative cooling, sheets of cloth were wrapped around condenser to suck the water from a water basin by capillary effect. The thermal properties at the different points of the refrigeration cycle were measured for typical operating conditions. The experimental results showed that the condenser temperature increases 0.45 °C for each degree increase in evaporator temperature when the air velocity is 2.5 m/s, and the ambient condition is 29 °C and the relative humidity is 37.5%. Meanwhile, the condenser temperature increase is 0.88 °C in the case of air velocity 1.1 m/s and ambient conditions of 31 °C and relative humidity of 47.1%. A theoretical model for the evaporative condenser was developed, and validated by experimental results. The theoretical model showed that the evaporative condenser can operate at a condensing temperature of 20 C lower than that of the air-cooled condenser for heat flux of 150 W/m2, and at air velocity 3 m/s. The effect of the different parameters on the condenser temperature was studied too.  相似文献   

4.
In this study, refrigerants R22 and R404A five of their binary mixtures which contain about 0%, 25%, 50%, 75% and 100% mass fractions of R404A were tested. It is investigated experimentally the effects of gas mixture rate, evaporator air inlet temperature (from 24 to 32 °C), evaporator air mass flow rate (from 0.58 to 0.74 kg/s), condenser air inlet temperature (from 22 to 34 °C) and condenser air mass flow rate (from 0.57 to 0.73 kg/s) on the coefficient of performance (COP) and exergetic efficiency values of vapor compression heat-pump systems. To determine the effect of the chosen parameters on the system and optimum working conditions, an experimental design method suggested by Genichi Taguchi was used. In this study, it was observed that the most effective parameters are found to be the condenser air inlet temperature for COP and exergetic efficiency.  相似文献   

5.
An idea that improves the wettability over the surfaces of a cylindrical dehumidifier channel was proposed and experimentally proved. Fibrous sheets were attached to the inner surfaces of the channel. The capillary effect of fibers sustains the complete wetting of the heat and mass transfer surfaces. The air to be dehumidified and cooled flows upward in the annulus space between the two layers of fibrous sheets, which are saturated with the downward flowing desiccant solution. The permeability of the fibrous sheet was determined experimentally. It was 2.43 × 10?10 m2. The measured solution flow rate due to the capillary suction of the sheets was Γin,min = 1.12 kg/h m. The liquid desiccant tested was H2O/CaCl2 with salt concentration ratios ranging from 35 to 40%. The measured distribution of the solution flow rate along the circumference of the sheets at the outlet showed 5% deviation from the average flow rate. This is a good indication for the good wettability of walls inside the dehumidifier.Feeding the solution by this mechanism has many advantages over spray feeding. Beside sustaining complete surface wetting, it also prevents channel blockage with solution, which is a main factor in increasing the air pressure drop. About 95% of the air pressure drop is saved in this study by avoiding these problems. A simple theoretical model for the heat and mass transfer processes inside the dehumidifier was developed and experimentally validated. In general, there is good agreement between the predicted and measured data. The developed model was utilized to study the effect of the different parameters on the dehumidifier performance. For a 1 m height dehumidifier with an inlet specific humidity and air temperature of 0.0234 kgv/kga, and 35 °C, respectively, the predicted outlet air specific humidity was 0.0102 kgv/kgk and the corresponding outlet air temperature was 27.4 °C. The inlet solution temperature and salt concentration were 25 °C and 40%, respectively.  相似文献   

6.
The ejector cooling system (ECS) is suitable for solar cooling application due to its simple design and low cost. An ECS using a multi-function generator (ECS/MFG) as a thermal pumping device without rotating machines for refrigerant circulation has been designed and tested. The experiment of an ECS/MFG operating at full-cycle while using R141b has shown that the COPo can reach 0.225 and cooling capacity of 0.75 kW at generator temperature 90 °C, condenser temperature 37 °C, and evaporator temperature 8.5 °C. The present study also redesigned the ejector for working fluid R365mfc in order to replace R141b. This study has shown that R365mfc can replace R141b as the working fluid of ECS/MFG at no payoff of system performance as long as the ejector design is optimized.  相似文献   

7.
《Applied Thermal Engineering》2007,27(13):2226-2232
The paper reviews the evaporation of R407C data currently available in the literature. The experimental rig and procedure are discussed. Experimental data about the evaporation for the pure R407C and R407C/oil mixtures in two smooth tubes and two enhanced tubes are also presented. The performance benefits of the micro-fin tube and corrugated tube are quantified and discussed. During tests inlet vapour quality was set 0 and outlet quality 0.7. Mass flux density varied from about 250 to 500 kg/m2 s. The experiments have been conducted for average saturation temperature 0 °C.  相似文献   

8.
A simulation model for the CO2 heat pump water heater was developed and validated in this study. Component models of the gas cooler, evaporator, compressor, and expansion valve were constructed with careful consideration for the heat transfer performances. To validate the simulation model, experiments were carried out using an actual CO2 heat pump water heater (water heating capacity: 22.3 kW; hot-water temperature: 90 °C). In simulations and experiments, the effects of the inlet water temperature and outside air temperature on the system characteristics were discussed. As a result, the average difference in COP between the simulation results and experimental results is 1.5%.  相似文献   

9.
A small scale steam jet ejector experimental setup was designed and manufactured. This ejector setup consists of an open loop configuration and the boiler operate in the temperature range of Tb = 85–140 °C. The typical evaporator liquid temperatures range from Te = 5 °C to 10 °C while the typical water-cooled condenser pressure ranges from Pc = 1.70 kPa to 5.63 kPa (Tc = 15–35 °C). The boiler is powered by two 4 kW electric elements while a 3 kW electric element simulates the cooling load in the evaporator. The electric elements are controlled by means of variacs.Primary nozzles with throat diameters of 2.5 mm, 3.0 mm and 3.5 mm are tested while the secondary ejector throat diameter remains unchanged at 18 mm. These primary nozzles allow the boiler to operate in the temperature range of Tb = 85–110 °C. When the nozzle throat diameter is increased, the minimum boiler temperature decreases. A primary nozzle with a 3.5 mm throat diameter was tested at a boiler temperature of Tb = 95 °C, an evaporator temperature of Te = 10 °C and a critical condenser pressure of Pcrit = 2.67 kPa (22.6 °C). The system's COP is 0.253.In a case study the experimental data of a solar powered steam jet ejector air conditioner is investigated. Solar powered steam ejector air conditioning systems are technical and economical viable when compared to conventional vapour compression air conditioners. Such a system can either utilise flat plate or evacuated tube solar thermal collectors depending on the type of solar energy available.  相似文献   

10.
《Applied Thermal Engineering》2007,27(13):2195-2199
In this paper, a solid adsorption cooling system with silica gel as the adsorbent and water as the adsorbate was experimentally studied. To reduce the manufacturing costs and simplify the construction of the adsorption chiller, a vacuum tank was designed to contain the adsorption bed and evaporator/condenser. Flat-tube type heat exchangers were used for adsorption beds in order to increase the heat transfer area and improve the heat transfer ability between the adsorbent and heat exchanger fins. Under the standard test conditions of 80 °C hot water, 30 °C cooling water, and 14 °C chilled water inlet temperatures, a cooling power of 4.3 kW and a coefficient of performance (COP) for cooling of 0.45 can be achieved. It has provided a specific cooling power (SCP) of about 176 W/(kg adsorbent). With lower hot water flow rates, a higher COP of 0.53 can be achieved.  相似文献   

11.
《Applied Energy》2007,84(4):363-373
A CLOHP/CV air-preheater has been used for recovering the waste heat from the drying cycle. The CLOHP/CV heat-exchanger consisted of copper tubes 3.58 m long and internal diameter 0.002 m. The evaporator and condenser sections were 0.19 m long, the adiabatic sections 0.08 m long, the hot air velocity was 0.5, 0.75 or 1.0 m/s with the hot air temperature 50, 60 or 70 °C, and the relative humidity was 100%. The working fluid was R134a with a filling ratio of 50%. The hot-air temperature increased from 50 to 70 °C; the heat-transfer rate increased slightly. The velocity increase from 0.5 0.75, to 1.0 m/s led to the heat-transfer rate slightly decreasing. The velocity increase from 0.5 to 1 m/s led to a slight decrease in effectiveness. As the hot-air temperature increases from 50 to 70 °C, the effectiveness slightly increased; and the relative humidity was reduced to the range 54–72% from 89% to 100%. The CLOHP/CV air-preheater can reduce the relative humidity and achieve energy thrift.  相似文献   

12.
In this paper, a solar-powered compound system for heating and cooling was designed and constructed in a golf course in Taiwan. An integrated, two-bed, closed-type adsorption chiller was developed in the Industrial Technology Research Institute in Taiwan. Plate fin and tube heat exchangers were adopted as an adsorber and evaporator/condenser. Some test runs have been conducted in the laboratory. Under the test conditions of 80 °C hot water, 30 °C cooling water, and 14 °C chilled water inlet temperatures, a cooling power of 9 kW and a COP (coefficient of performance for cooling) of 0.37 can be achieved. It has provided a SCP (specific cooling power) of about 72 W/(kg adsorbent). Some field tests have been performed from July to October 2006 for providing air-conditioning and hot water. The efficiency of the collector field lies in 18.5–32.4%, with an average value of 27.3%. The daily average COP of the adsorption chiller lies in 33.8–49.7%, with an average COP of 40.3% and an average cooling power of 7.79 kW. A typical daily operation shows that the efficiency of the solar heating system, the adsorption cooling and the entirely solar cooling system is 28.4%, 45.2%, and 12.8%, respectively.  相似文献   

13.
This present paper deals with exergy efficiency results of the Wind Turbine Power Plants (WTPPs). Effects of meteorological variables such as air density, pressure difference between state points, humidity, and ambient temperature on exergy efficiency are discussed in a satisfactory way. Some key parameters are given monthly for the three turbines. Exergy efficiency differs from 0.23 to 0.27 while temperature is changing from 268.15 K to 308.15 K with air density 1.368–1.146 (kg/m3). While pressure difference (ΔP) between inlet and outlet of the turbine differs from 100 to 1100 (Pa), exergy efficiency decreases fairly for different wind speeds. While specific humidity is changing from 0.001 to 0.015 (kgwater/kgdry air), exergy efficiency decreases gently. Generally these meteorological variables are neglected while planning WTPPs, but this neglect can cause important errors in calculations and energy plans. Obtained results indicate that while planning WTPPs meteorological variables must be taken into account.  相似文献   

14.
A thermally driven flat plate air gap membrane distillation liquid desiccant regenerator for lithium chloride in dehumidification applications is modeled. Operating conditions and device geometry are optimized, and it is found that membrane materials have little influence on regenerator performance. It is shown that radiation heat transfer across the air gap cannot be neglected. The regenerator removes 11.4 g min?1 cm?3 of moisture with a COP of 0.372 for an inlet solution concentration of 0.38, solution flow rate of 50 ml min?1, and heated solution temperature of 135 °C. This design has negligible desiccant carry-over losses and operates without a blower.  相似文献   

15.
As one of the natural refrigerants, CO2 is a potential substitute for synthesized refrigerants with favorable environmental properties. In order to improve the performance of the CO2 transcritical compression cycle, the performance of the two stage compression cycle with two gas coolers (TSCC + TG) and the two stage compression cycle with intercooler (TSCC + IC) were analyzed, respectively. Under the given calculation condition, the optimum intermediate pressure of the cycle TSCC + TG and the TSCC + IC are 7.09 MPa and 5.89 MPa, and the maximal COP are 2.77 and 3.08, respectively. Range of the given evaporating temperature and outlet temperature of gas cooler, the experimental testing shows that the performance of cycle TSCC + IC are 11.88% and 10.87% better than that of the cycle TSCC + TG, respectively. Range of the given inlet temperature and cooling water volume flow of gas cooler, the refrigeration COP (COPc) and heat COP (COPh) of the cycle TSCC + IC are average 10.97% and 4.39% higher than that of the cycle TSCC + TG. Range of the given inlet temperature and chilled water volume flow of evaporator, the refrigeration COP (COPc) and heat COP (COPh) of the cycle TSCC + IC are average 10.71% and 3.67% higher than that of the cycle TSCC + TG, respectively. The error between theoretical calculation and experimental testing is not exceeds 20%.  相似文献   

16.
The energy and exergy analyses of the drying process of olive mill wastewater (OMW) using an indirect type natural convection solar dryer are presented. Olive mill wastewater gets sufficiently dried at temperatures between 34 °C and 52 °C. During the experimental process, air relative humidity did not exceed 58%, and solar radiation ranged from 227 W/m2 to 825 W/m2. Drying air mass flow was maintained within the interval 0.036–0.042 kg/s. Under these experimental conditions, 2 days were needed to reduce the moisture content to approximately one-third of the original value, in particular from 3.153 gwater/gdry matter down to 1.000 gwater/gdry matter.Using the first law of thermodynamics, energy analysis was carried out to estimate the amounts of energy gained from solar air heater and the ratio of energy utilization of the drying chamber. Also, applying the second law, exergy analysis was developed to determine the type and magnitude of exergy losses during the solar drying process. It was found that exergy losses took place mainly during the second day, when the available energy was less used. The exergy losses varied from 0 kJ/kg to 0.125 kJ/kg for the first day, and between 0 kJ/kg and 0.168 kJ/kg for the second. The exergetic efficiencies of the drying chamber decreased as inlet temperature was increased, provided that exergy losses became more significant. In particular, they ranged from 53.24% to 100% during the first day, and from 34.40% to 100% during the second.  相似文献   

17.
We propose dimensionless correlations for frost properties on a cold cylinder surface. Frosting experiments were performed while changing various frosting parameters such as the air temperature, cold cylinder surface temperature, air velocity, and absolute humidity. The experimental data showed that a uniform frost layer grew around the circumference of the cylinder at a high air velocity. Dimensionless correlations for the thickness, density, and surface temperature of the frost layer, and for the heat transfer coefficient were obtained as functions of the Reynolds number, Fourier number, absolute humidity, and dimensionless temperature. The applicable ranges of these correlations are Reynolds number of 700–3000 (air velocities of 0.5–2.0 m/s), Fourier number of 56.8–295.7 (operating time of 0–100 min), absolute humidity of 0.00280–0.00568 kg/kga, air temperatures of 3–9 °C, and cold cylinder surface temperatures of ?32 to ?20 °C. The proposed correlations agreed with the experimental data within an error of 15%.  相似文献   

18.
A novel cryogenic heat pipe, oscillating heat pipe (OHP), which consists of an 4 × 18.5 cm evaporator, a 6 × 18.5 cm condenser, and 10 cm length of adiabatic section, has been developed and experimental characterization conducted. Experimental results show that the maximum heat transport capability of the OHP reached 380 W with average temperature difference of 49 °C between the evaporator and condenser when the cryogenic OHP was charged with liquid nitrogen at 48% (v/v) and operated in a horizontal direction. The thermal resistance decreased from 0.256 to 0.112 while the heat load increased from 22.5 to 321.8 W. When the OHP was operated at a steady state and an incremental heat load was added to it, the OHP operation changed from a steady state to an unsteady state until a new steady state was reached. This process can be divided into three regions: (I) unsteady state; (II) transient state; and (III) new steady state. In the steady state, the amplitude of temperature change in the evaporator is smaller than that of the condenser while the temperature response keeps the same frequency both in the evaporator and the condenser. The experimental results also showed that the amplitude of temperature difference between the evaporator and the condenser decreased when the heat load increased.  相似文献   

19.
《Applied Thermal Engineering》2007,27(14-15):2426-2434
This paper presents measurements and predictions of a heat pipe-equipped heat exchanger with two filling ratios of R134a, 19% and 59%. The length of the heat pipe, or rather thermosyphon, is long (1.5 m) as compared to its diameter (16 mm). The airflow rate varied from 0.4 to 2.0 kg/s. The temperatures at the evaporator side of the heat pipe varied from 40 to 70 °C and at the condenser part from 20 to 50 °C. The measured performance of the heat pipe has been compared with predictions of two pool boiling models and two filmwise condensation models. A good agreement is found. This study demonstrates that a heat pipe equipped heat exchanger is a good alternative for air–air exchangers in process conditions when air–water cooling is impossible, typically in warmer countries.  相似文献   

20.
Artificial neural network inverse (ANNi) is applied to calculate the optimal operating conditions on the coefficient of performance (COP) for a water purification process integrated to an absorption heat transformer with energy recycling. An artificial neural network (ANN) model is developed to predict the COP which was increased with energy recycling. This ANN model takes into account the input and output temperatures for each one of the four components (absorber, generator, evaporator, and condenser), as well as two pressures and LiBr + H2O concentrations. For the network, a feedforward with one hidden layer, a Levenberg–Marquardt learning algorithm, a hyperbolic tangent sigmoid transfer function and a linear transfer function were used. The best fitting training data set was obtained with three neurons in the hidden layer. On the validation data set, simulations and experimental data test were in good agreement (R > 0.99). This ANN model can be used to predict the COP when the input variables (operating conditions) are well known. However, to control the COP in the system, we developed a strategy to estimate the optimal input variables when a COP is required from ANNi. An optimization method (the Nelder–Mead simplex method) is used to fit the unknown input variable resulted from the ANNi. This methodology can be applied to control on-line the performance of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号