首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
十四烷是工业中最常用的液态烷烃之一,常被用于有机溶剂,有重要的应用价值。相比于纯烷烃,烷烃基纳米流体具有许多 优异的性质,特别是导热系数的增强。本文采用实验与理论模型对比的方法,对一些影响十四烷基纳米流体导热系数的因素进行研究,包括纳米颗粒种类、浓度、温度以及稳定性。结果表明,本文中纳米流体的有效导热系数随纳米颗粒体积分数的增加而增加,随温度的升高而下降;在各种纳米颗粒中,碳纳米管对导热的增强最为显著,且碳纳米管流体具有最好稳定性。  相似文献   

2.
Thermal conductivity and stability of carbon nanotube (CNT) structures in water-based nanofluid, as well as their dependence to temperature and time variation are of a great concern. In order to investigate such dependence, five different structures, namely SWNT (single wall CNT), DWNT (double wall CNT), FWNT (few wall CNT) and two different multiwalls were applied in this study. The experiments reveal that the maximum UV–VIS absorbance of the solution corresponds to the dispersion of SWNT in the base fluid. The results from zeta size distribution and thermal conductivity demonstrate that as the number of nanotube wall increase, both stability and thermal conductivity decrease.  相似文献   

3.
The paper presents the numerical analysis on microchannel laminar heat transfer and fluid flow of nanofluids in order to evaluate the suitable thermal conductivity of the nanoparticles that results in superior thermal performances compared to the base fluid. The diameter ratio of the micro-tube was Di/Do = 0.3/0.5 mm with a tube length L = 100 mm in order to avoid the heat dissipation effect. The heat transfer rate was fixed to Q = 2 W. The water based Al2O3, TiO2 and Cu nanofluids were considered with various volume concentrations ϕ = 1,3 and 5% and two diameters of the particles dp = 13 nm and 36 nm. The analysis is based on a fixed Re and pumping power Π, in terms of average heat transfer coefficient and maximum temperature of the substrate. The results reveal that only the nanofluids with particles having very high thermal conductivity (λCu = 401 W/m K) are justified for using in microcooling systems. Moreover, the analysis is sensitive to both the comparison criteria (Re or Π) and heat transfer parameters (have or tmax).  相似文献   

4.
The effective thermal conductivity of mono- and poly-dispersed random assemblies of spherical particles and irregular crystals, both dry and partially or fully saturated by wetting and non-wetting liquids, has been determined computationally by numerical solution of the Fourier’s law on 3-D reconstructed media and experimentally by the transient hot wire method. The effect of spatial distribution and volume fractions of the vapour, liquid, and solid phases on effective thermal conductivity was systematically investigated. A power-law correlation for estimating the effective conductivity, valid over a wide range of phase volume fractions and relative conductivities of components, has been proposed.  相似文献   

5.
This paper deals with spherical nanoparticles size effects on thermal performance and pressure drop of a nanofluid in a trapezoidal microchannel-heat-sink (MCHS). Eulerian–Eulerian two-phase numerical approach is utilized for forced convection laminar, incompressible and steady three dimensional flow of copper-oxide nanoparticles with water as base fluid at 100 to 200 nm diameter and 1% to 4% volume concentration range. Continuity, momentum, energy and volume conservation equations are solved at whole of the computational domain via finite volume method. Obtained results signify that pressure drop increases 15% at Re = 500 and 1% volume concentration while nanoparticles diameter increases from 100 to 200 nm. By increasing volume concentration, nanoparticles size effect becomes more prominent and it is observed that increment rate of pressure drop is intensified for above 150 nm particles diameter. Unlike the pressure drop, heat transfer decreases with an increase in nanoparticles diameter. Also, it is observed that with an increase in nanoparticles diameter, average Nusselt number of base fluid decreases more than that of the nanoparticles and this signifies that base fluid has more efficacy on thermal performance of copper-oxide nanofluid.  相似文献   

6.
利用纳米流体对太阳能辐射分频吸收与高效传热的性能,结合太阳能直接吸收(DAC)技术、菲涅尔聚光技术,构建了基于纳米流体的新型聚光太阳能光伏热联用(CPV/T)装置,并建立了装置的物理模型和能量平衡模型。采用计算流体力学方法进行模拟仿真和对比实验,分析了不同流速及流体工质下光伏组件及纳米流体的温度场。研究结果表明:基于纳米流体的CPV/T装置能够充分利用纳米流体辐射分频吸收与高效传热特性,取得对太阳能光伏组件冷却的更好效果,也获得了更高的光热部分流体出口温度;与仅背板冷却的普通光伏热装置相比,流体出口温度有较大幅度的提升,从而提高了光热部分的利用能级。  相似文献   

7.
全面搜集整理了国内外已公开发表的水导热系数的实验数据,并比较分析筛选出了其中可靠的实验数据点作为基准数据.在此基础上,通过多元回归分析和加权最小二乘拟合方法,建立了水的导热系数方程.对4 539个基准数据点的计算结果表明,方程的精度优于IAPWS推荐的现行水的导热系数方程,特别是在高温高压区和临界区,方程的描述精度比原...  相似文献   

8.
9.
The effect of particle size on hydrolysis properties of hydrogenated Mg3La was investigated through fixing the grain size of in-situ formed LaH3 and MgH2 from hydrogenated Mg3La. The hydrolysis rate and hydrogen yield were affected by its particle size. The hydrogenated Mg3La with smaller particle size of [<12] μm had a higher hydrolysis yield of 863 ml g−1 (7.70 wt.%) hydrogen. The surface area and defect of samples were increased through reducing the particle size and thus promoted the complete hydrolysis. Reducing the particle size is an effective and simple method to improve hydrolysis properties of magnesium hydrides-based materials.  相似文献   

10.
The present study investigates the effect of ball milling on thermal conductivity and viscosity of stable nanofluid of fly ash from Indian coal. The particle size of fly ash decreased from micron size to 89, 55.5, and 11.5 nm with reduction by 55, 90, and 434 times, respectively, due to ball milling for 30, 40, and 60 hours. The surfactant Triton X-100 was used to attain stability of 0.1% and 0.5% volume concentration of fly ash nanofluid. The samples were characterized by using scanning electron microscopy, dynamic light scattering, and zeta potential analysis. The outcome reveals that the thermal conductivity of fly ash nanofluid increases with temperature, volume concentration, and reduction in particle size. A maximum enhancement in thermal conductivity of 11.9% with 11.5-nm nanofluid sample and 5.4% with 89-nm nanofluid sample for 0.5% concentration at 60°C is observed. The viscosity of fly ash nanofluid increases with concentration and varies inversely with particle size and temperature. A difference of 1.6% in viscosity is observed between the values obtained with 11.5 and 89 nm nanofluid samples for 0.5% concentration at 30°C.  相似文献   

11.
An experimental investigation on the convective heat transfer characteristics in the developing region of tube flow with constant heat flux is carried out with alumina–water nanofluids. The primary objective is to evaluate the effect of particle size on convective heat transfer in laminar developing region. Two particle sizes were used, one with average particle size off 45 nm and the other with 150 nm. It was observed that both nanofluids showed higher heat transfer characteristics than the base fluid and the nanofluid with 45 nm particles showed higher heat transfer coefficient than that with 150 nm particles. It was also observed that in the developing region, the heat transfer coefficients show higher enhancement than in the developed region. Based on the experimental results a correlation for heat transfer in the developing region has been proposed for the present range of nanofluids.  相似文献   

12.
In this study, a combination of thermal conductivity, viscosity, and density characteristics are experimentally probed for attaining maximum heat transfer using MgO-Therminol 55 as nanofluid is reported. Recent studies proved that nanofluids have miserable properties that make them feasibly useful in many applications in heat transfer compared to base fluid.MgO-Therminol 55 nanofluid is synthesized by diffusion of MgO nanoparticles of size 160–190 nm in Therminol 55 at different concentrations (0.05%–0.3%). Thermal conductivity and viscosity are calculated at a temperature range of 30–60°C using kd2 analyzer and Fenske viscometer. Data obtained from the experimental results reveals that when volume concentration is increased with respect to that thermal conductivity increases, viscosity decreases and density decreases at different temperatures. The proposed models were supportive to the experimental data.  相似文献   

13.
It is obvious that the applicability and efficiency of nanofluids (suspensions contained nanoparticles) are related to their high heat transfer coefficients, especially thermal conductivity. Many parameters affect this property including size, shape and source of nanoparticles, surfactants, power of ultrasonic, time of ultrasonication, elapsed time after ultrasonication, pH, temperature, particle concentration and surfactant concentration. Some of these parameters may have interaction effects. An accepted way for obtaining the optimized condition is based on the design of experiments and statistical analysis. In this paper we investigate the stability and thermal conductivity of carbon nanotube (CNT)/water nanofluids and propose the optimum condition for the production and application of nanofluids. It has been shown that the significant factors on the thermal conductivity and stability are not precisely similar to one another.  相似文献   

14.
Thermal conductivity and viscosity analysis of Al2O 3/CuO (50/50) hybrid nanofluid in various mass fractions of ethylene glycol (EG) and propylene glycol (PG) binary base fluid have been investigated in the present work. Hybrid nanofluid with vol. fraction range limited to 1.5% and within the higher temperature range of 50°C to 70°C is considered for thermal conductivity and viscosity analysis. Impact on viscosity and conductivity models with various shape nanoparticles, i.e, spherical, cylindrical, brick, platelets, and blades have been discussed and were compared in EG and PG binary base fluids. Also, the analysis extends to the prediction for the stability with zeta potential and synthesis of spherical shape Al2O3/CuO hybrid nanofluid with X‐ray diffraction (XRD) and scanning electron microscope (SEM). The theoretical analysis revealed that thermal conductivity of Al2O3/CuO hybrid nanofluid in EG binary base fluid is lower compared to in PG binary base fluid. The thermal conductivity is observed to be higher in spherical and cylindrical shape nanoparticle compared to bricks, blades, and platelets shape nanoparticles. Optimum viscosity of Al2O3/CuO hybrid nanofluid is observed at 50%EG and 30%PG of the binary base fluid. Hybrid nanofluid in 30% of PG as binary base fluid results 16.2% higher dynamic viscosity compared to pure PG base fluid for a volume concentration of 2%. Zeta potential measurement results in the stability of spherical Al2O3‐CuO/ (50/50) EG/W hybrid nanofluid, and it may be considered as a heat transfer fluid.  相似文献   

15.
In the present work, effects of different surface modification methods (surfactant, acid, base, amide, sulfate) on multi walled carbon nanotubes (CNTs) are studied. The dispersion stability of CNTs in aqueous media was confirmed and the effects of the type of treatment on the thermal conductivity of CNT/water nanofluids were investigated. The surface of the CNTs was modified with acid mixtures (H2SO4–HNO3), potassium persulfate (KPS), tetrahydrofuran (THF), octadecylamine and sodium dodecyl sulfate (SDS). UV–visible spectral data indicate that the CNTs treated first with the acid mixture and then with KPS show the best dispersion stability. The basic treatment and SDS treated CNT/water nanofluids (SDS-KCNT/water) showed the highest conductivity of 0.765 W/mK which increases 24.9% of water as a base fluid conductor.  相似文献   

16.
This paper focuses on designing an artificial neural network which can predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluids from input experimental data including temperature, diameter of particles, and solid volume fraction. The experimental data were extracted and they were used as learning dataset to train the neural network. To find a proper architecture for network, an iteration method was used. Based on the results, there was no over-fitting in designed neural network and the neural network was able to track the data. ANN outputs showed that the maximum errors in predicting thermal conductivity and dynamic viscosity are 2% and 2.5%, respectively. Based on the ANN outputs, two sets of correlations for estimating the thermal conductivity and dynamic viscosity were presented. The comparisons between experimental data and the proposed correlations showed that the presented correlations were in an excellent agreement with experimental data.  相似文献   

17.
This investigation aims to study Hall's current effect on the peristaltic flow of a Jeffrey nanofluid with variable thermal conductivity in an inclined asymmetric channel. Joule heating and oblique magnetic field effects are taken into consideration. A system of ordinary differential equations is obtained under the approximation of low Reynolds number and long wavelength, which consists of momentum, energy, and concentration equations. The influences of penitent physical parameters on the distribution of velocity, temperature, and concentration have been discussed graphically. Streamline graphs are offered in the terminus, which elucidates the trapping bolus phenomenon. The resulting equations are solved numerically using the ND Solver technique. The thermal conductivity parameter causes the pressure gradient to increase while reducing the pressure rise. Our present model can be applied to physiological flow transportation in the veins with heat transfer.  相似文献   

18.
We measured the critical heat flux (CHF) and boiling heat transfer coefficient (BHTC) of water-based Al2O3 (alumina) nanofluids. To elucidate the stabilizer effect on CHF and BHTC of alumina/water nanofluids, a polyvinyl alcohol (PVA) was used as a stabilizer. The plate copper heater (10 × 10 mm2) is used as the boiling surface and the concentration of alumina nanoparticle varies 0–0.1 vol.%. The results show that the BHTC of the nanofluids becomes lower than that of the base fluid as the concentration of nanoparticles increases while CHF of it becomes higher. It is found that the increase of CHF is directly proportional to the effective boiling surface area and the reduction of BHTC is mainly attributed to the blocking of the active nucleation cavity and the increase of the conduction resistance by the nanoparticle deposition on the boiling surface.  相似文献   

19.
In this paper, the effect of a magnetic field on natural convection in an open enclosure which subjugated to water/alumina nanofluid using Lattice Boltzmann method has been investigated. The cavity is filled with water and nanoparticles of Al2O3 at the presence of a magnetic field. Calculations were performed for Rayleigh numbers (Ra = 104–106), volume fractions of nanoparticles (φ = 0,0.02,0.04 and .0.06) and Hartmann number (0  Ha  90) with interval 30 while the magnetic field is considered horizontally. Results show that the heat transfer decreases by the increment of Hartmann number for various Rayleigh numbers and volume fractions. The magnetic field augments the effect of nanoparticles at Rayleigh number of Ra = 106 regularly. Just as the most effect of nanoparticles for Ra = 104 is observed at Ha = 30, so the most influence of nanoparticles occurs at Ha = 60 for Ra = 105.  相似文献   

20.
The analysis of magnetized micro–nanoliquid flows generated by the movable disk is executed in this study. The disk is contained under the porous zone influence. The heat generation, heat sink, and temperature-dependent conductance analysis are reported through the energy equation. The activation energy in terms of a chemical reaction is incorporated through the mass equation. The flow model is normalized through the implementation of similarity transformations. The numerical algorithm Runge–Kutta–Fehlberg is used to solve the reduced system. Results are plotted graphically and in tabular format to investigate the velocity, thermal, and concentration fields. Numeric benchmarks of couple and shear stresses, thermal and concentration rates are also computed. The temperature is augmented against the incremented thermophoretic, variable conductivity, and Brownian movement parameters. The presence of variable conductivity parameter resulted in a weaker rate of heat transportation. The heat transportation rate is boosted with an incremented Prandtl number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号