首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mode-I interlaminar toughness improvement through epoxy-dissolvable thermoplastic phenoxy interleaves of different surface-to-volume ratios is reported. Shear yielding around the crack tip in the reaction-induced phase separated blend morphology was found to be the main toughening mechanism responsible. The dissolution behaviour of thermoplastic phenoxy fibre within epoxy resin was studied, and a simple relationship between dissolution time, temperature, and original fibre diameter is proposed. Thermoplastic interleaves in the form of continuous films and electrospun fibre mats of equivalent weights were employed in order to study the effect of surface-to-volume ratio on dissolution and toughening behaviour. The toughness improvements obtained for the dissolvable thermoplastic nanofibre interleaves were the highest ever reported for these types of toughening concepts, with a dramatic increment from 0.56 kJ/m2 to 1.90 kJ/m2 with only 1.6 wt.% phenoxy interleaves. Differences in toughening behaviour between continuous films and nanofibre mats are explained in relation to differences in dissolution time.  相似文献   

2.
Double-cantilever-beam tests were applied to investigate the mode I interlaminar fracture toughness of carbon fibre/epoxy laminates, in which the epoxy matrices were incorporated with rubber and silica nano-particles, either singly or jointly. It is shown that the toughness is improved owing to the presence of these nano-particles although nano-rubber is more effective than nano-silica. Further, by keeping the total particle weight percentage constant in epoxies (e.g., at 8 and 12 wt.%) filled with equal amount of nano-silica and nano-rubber, the interlaminar toughness values of the hybrid laminates are always higher than those with nano-silica filled epoxies but lower than those with nano-rubber filled matrices. Scanning electron microscopy examination of the delaminated surfaces of composite laminates filled with nano-particles revealed that cavitation of nano-rubber particles/void growth and debonding of nano-silica from epoxy matrix are responsible for the improved interlaminar toughness observed. It is also shown that the bulk toughness of nano-particle filled epoxies cannot be fully transferred to the interlaminar toughness of composite laminates, being limited by the constraint effect imposed by the carbon fibres. Finally, the role of fibre-bridging on the delaminated crack and hence delamination toughness is discussed.  相似文献   

3.
A novel pre-preg coating method was used to improve the interlaminar fracture toughness in carbon fibre epoxy composite laminates, using reactive liquid rubber. The Epoxy Terminated Butadiene Nitrile (ETBN) liquid rubber incorporated between pre-pregs using automatic draw bar coating technique. Experimental test results reveal that by adding ETBN in small quantities in the range of 15.55–22.66 g/m2, inter laminar critical energy release rates (GIC and GIIC) can be improved up to 140% in mode-I loadings and 32% in mode-II loadings respectively. It was confirmed that the effect of ETBN rubber concentration in carbon epoxy pre-preg system on interlaminar fracture toughness under mode-I and mode-II loadings, was discussed by on the bases of fractographic observations and mechanism considerations using SEM.  相似文献   

4.
《Composites Part A》2007,38(8):1860-1871
‘Melding’ is a novel in situ method for joining thermosetting composite structures, without the need of adhesives. Laminate joining is achieved using uncrosslinked resin matrix of the pre-preg. This study used Hexply914C pre-preg material to characterize melded CFRP structures produced using the melding method. A designated area of a laminate was maintained at temperatures below 40 °C retaining uncured (B-staged) material, while the remainder of the laminate was cured at 175 °C. After a 2.5 h cure cycle, the cured region showed a high degree of cure (0.88) and glass transition temperature (176 °C). The uncured area of the same laminate was cured in a second stage, simulating an in situ melded joint. By controlling the temperature and duration of the intermediate dwell and affecting minimum viscosity values prior to final cure, low values of porosity (<0.5%) were achieved. The mechanical properties of the resulting joint were consistent throughout the melded laminate. Flexural strength (1600 MPa), flexural modulus (100–105 MPa) and short beam strength (105–115 MPa) values observed where equivalent or greater than those found in the recommended autoclave cured control specimens. After the entire laminate was post cured, glass transition temperatures of 230 °C (peak tan δ) were observed in all areas of the laminate.  相似文献   

5.
This paper improves the two stress fracture criteria proposed by Whitney and Nuismer (known as the point stress criterion and the average stress criterion) to predict the strength of composite laminates with a circular hole. In the point stress criterion, it is assumed that the failure occurs when the stress over some distance (d 0) away from the notch is equal to or greater than the un-notched laminate strength. In the average stress criterion it is assumed that failure occurs when the average stress over some distance (a 0) ahead of the notch equals the unnotched laminate strength. Both stress fracture criteria are two parameter models based on the unnotched strength (σ 0) and a characteristic dimension (d 0 ora 0). A simple relation is used for the characteristic length to improve the accuracy while evaluating the notched strength of carbon/epoxy composite laminates. The analytical results are compared well with the existing test results of AS4-carbon/948 Al epoxy [0/90]4s and [0/ ± 45/90]2S composite laminates with various hole diameters and specimen widths.  相似文献   

6.
This paper improves the two stress fracture criteria proposed by Whitney and Nuismer (known as the point stress criterion and the average stress criterion) to predict the strength of composite laminates with a circular hole. In the point stress criterion, it is assumed that the failure occurs when the stress over some distance (d 0) away from the notch is equal to or greater than the unnotched laminate strength. In the average stress criterion it is assumed that failure occurs when the average stress over some distance (a 0) ahead of the notch equals the unnotched laminate strength. Both stress fracture criteria are two parameter models based on the unnotched strength (σ0) and a characteristic dimension (d 0 or a 0). A simple relation is used for the characteristic length to improve the accuracy while evaluating the notched strength of carbon/epoxy composite laminates. The analytical results are compared well with the existing test results of AS4-carbon/948 A1 epoxy [0/90]4 s and [0/±45/90]2 S composite laminates with various hole diameters and specimen widths.  相似文献   

7.
开孔层合板的强度预报往往取决于孔边的临界长度,它不仅与材料性能,而且与铺层、孔径都有关。本文基于线弹性断裂力学,提出了一种预报对称铺层层合板开孔拉伸强度的新方法,只需提供正交层合板的断裂韧性和无缺口层合板的拉伸强度,显著降低对实验数据的依赖性。首先,将临界长度表作为层合板断裂韧性和无缺口拉伸强度的函数,再通过正交层合板[90/0]8s的紧凑拉伸试验和虚拟裂纹闭合技术,确定出0°层断裂韧性,进而计算得到任意对称铺层层合板的断裂韧性。本文测试了T300/7901层合板[0/±45/90]2s和[0/±30/±60/90]s的开孔拉伸强度,孔径分别为3 mm、6 mm和9 mm。理论预报结果与试验值吻合较好,最大误差为15.2%,满足工程应用需求。   相似文献   

8.
Delamination between layers is an important problem in applications of fiber reinforced composite laminates. Tests were carried out to determine the interlaminar fracture toughness of AS4/3501-6 (carbon/epoxy) composite laminates using mixed-mode bending tests. Analysis of the test specimens in terms of mode I and mode II energy release rates showed good agreement between methods based on beam equations, compliance measurements, and detailed finite element analyses. The results showed that the critical mode I energy release rate for delamination decreased monotonically with increasing mode II loading. This is in contrast to some results in the literature. Various analytic representations of the mode interaction from the literature were compared, and shown to fit the data with reasonable accuracy.  相似文献   

9.
《Composites》1995,26(12):849-858
Dynamic and static delamination characteristics of two unidirectional carbon fibre-reinforced epoxy composite laminates (Hercules MI 1610 and Torayca T300) have been studied under impact and low-speed (2 mm min1) test conditions. The influence of interlaminar reinforcement with chopped Kevlar fibres on toughness has also been examined. The quasi-static or low-speed delamination tests were conducted with the usual double cantilever beam, end-notched flexure and mixed-mode flexure specimens. To determine the corresponding mode I, mode II and mixed-mode toughnesses under the impact condition, a special specimen design has been adopted and tests were performed with a Charpy impact machine. The novel aspect of the test scheme in the present study is that a single-plane delamination surface with a well-defined fracture mode has been obtained. The dynamic and static delamination characteristics of the same fracture mode were then studied by scanning electron microscopy, and special features were compared. While interlaminar reinforcement with a small amount of chopped Kevlar fibres resulted in an appreciable increase in the quasi-static delamination toughness, it was less effective under the impact condition.  相似文献   

10.
《Composites》1994,25(6):407-413
The effect of radius of curvature on the tensile notched strength of random short carbon fibre/epoxy composites containing 1, 5 and 15 mm length fibres is studied. The strength of all laminates showed a sensitivity to the radius of curvature, with the tensile strength decreasing at smaller radii of curvature. A model is developed to predict notched strength based on assumed evolution and propagation of damage from the tip of the notch. The predictions of the model depend principally on two material properties: the unnotched tensile strength and fracture toughness. Reasonable agreement is achieved between the predicted notched strength and experimental data.  相似文献   

11.
12.
13.
Textile-reinforced composites have become increasingly attractive as protection materials for various applications, including sports. In such applications it is crucial to maintain both strong adhesion at fibre–matrix interface and high interfacial fracture toughness, which influence mechanical performance of composites as well as their energy-absorption capacity. Surface treatment of reinforcing fibres has been widely used to achieve satisfactory fibre–matrix adhesion. However, most studies till date focused on the overall composite performance rather than on the interface properties of a single fibre/epoxy system. In this study, carbon fibres were treated by mixed acids for different durations, and resulting adhesion strength at the interface between them and epoxy resin as well as their tensile strength were measured in a microbond and microtensile tests, respectively. The interfacial fracture toughness was also analysed. The results show that after an optimum 15–30 min surface treatment, both interfacial shear strength and fracture toughness of the interface were improved alongside with an increased tensile strength of single fibre. However, a prolonged surface treatment resulted in a reduction of both fibre tensile strength and fracture toughness of the interface due to induced surface damage.  相似文献   

14.
Three different PAN based carbon fibres (Toray T600S, T700S and Tenax STS5631) were recycled from epoxy resin/carbon fibre composites using supercritical n-propanol. The recycled carbon fibres were characterised using single fibre tensile tests, SEM, XPS and micro-droplet test. The tensile strength and modulus of the recycled carbon fibre was very similar to the corresponding as-received carbon fibres. However, the surface oxygen concentration decreased significantly, which caused a reduction of the interfacial shear strength with epoxy resin.  相似文献   

15.
The fracture toughness testing of short fibre reinforced thermoplastic materials were performed. Materials tested were the polyimide resin and also that reinforced with 20 wt% or 30 wt% short carbon fibre. For introducing the initial crack, the tapping method, the sliding method and the bridge indentation method were examined. Among them, the sliding method was found to be effective for every case. The fracture tests were conducted by the three-point bending test with several loading rates. Stable crack growth was observed for the neat material while unstable fracture occurred for the reinforced materials. The critical values of the stress intensity factor at crack initiation were greater for the reinforced materials than for the neat resin. The fracture toughness of the 30 wt% reinforced material was independent of loading rate while that of 20 wt% reinforced material increased with loading rate. In order to investigate the fracture mechanisms, fractographic observations were also performed.  相似文献   

16.
In this study, core–shell rubber (CSR) nanoparticles with approximate particle size of 35 nm were used as a modifier for the epoxy polymer. The effects of various CSR contents in the epoxy matrix on mode I interlaminar fracture toughness, tensile strength, and fatigue life of the carbon fabric reinforced epoxy (CF/EP) composites were investigated. The experimental results showed that the mode I interlaminar fracture toughness at crack initiation and propagation significantly improved by 71.21 and 58.47 %, respectively, when 8.0 wt% CSR was dispersed in the epoxy matrix. The fatigue life of the modified CF/EP composites at all of CSR contents dramatically increased 75–100 times longer than that of the unmodified CF/EP composites at high cycle fatigue while tensile strength slightly increased by about 10 %. Field emission scanning electron microcopy (FESEM) observations of the fracture surfaces were conducted to explain failure mechanisms of CSR addition to the CF/EP composites. The evidences of the rubber nanoparticle debonding, plastic void growth, and microshear banding were credited for delaying the onset of matrix crack, and reducing the crack growth rate, as a result, attributed to increase in the mechanical properties of the CF/EP composites.  相似文献   

17.
Carbon fibre reinforced Al-12% Si alloy composite has been fabricated by pre-treating the fibres with K2ZrF6 followed by molten alloy infiltration and subsequent hot pressing of the preforms. The infiltration conditions were arrived at based on the measurement of tensile strength of the fibres extracted from the preforms. The fibre volume per cent of 20 was found to result in composite tensile strength of about 240 MPa as compared to tensile strength of 100 MPa for the unreinforced matrix. Characterization of the interface revealed the formation of ZrSi2 and diffusion of potassium and aluminium into the fibre. The interfacial bonding was strong as is evinced by the absence of fibre pull-out on to the fracture surface.  相似文献   

18.
以经表面处理的石墨、单向炭布、和沥青粉为原料,通过热压烧结制备炭布叠层C/C复合材料.考察了炭布含量对材料密度、孔隙率、弯曲强度以及摩擦磨损的影响,采用MM200摩擦磨损试验机进行了环-块摩擦磨损实验,并借助SEM表征了材料的弯曲断口和磨痕形貌.结果表明:当炭布质量分数为50%时,C/C复合材料的综合性能最好,抗弯强度为112.2MPa,密度为1.72 g/cm3,摩擦系数为0.28,磨损率为3.68×10-13 m3·N-1·m-1.弯曲实验中材料呈“假塑性”方式破坏,断口出现大量纤维的拔出.石墨相含量的增加有利于形成较好的摩擦膜,降低磨损率,保持摩擦系数稳定.  相似文献   

19.
To investigate enhancement of matrix-dominated properties (such as interlaminar fracture toughness) of a composite laminate, two different bead-filled epoxies were used as matrices for the bead-filled epoxy/glass fibre hybrid composites. The plane strain fracture toughness of two different bead-filled epoxies have been measured using compact tension specimens. Significant increases in toughness were observed. Based on these results the interlaminar fracture toughness and fracture behaviour of hybrid composites, fabricated using bead-filled epoxy matrices, have been investigated using double cantilever beam and end notch flexure specimens for Mode I and Mode II tests, respectively. The hybrid composites based on carbon bead-filled matrix shows an increase in both G IC initiation and G IIC values as compared to a glass fibre reinforced plastic laminate with unmodified epoxy matrix. The optimum bead volume fraction for the hybrid composite is between 15% and 20%. However, the unmodified epoxy glass-fibre composite shows a higher G IC propagation value than that of hybrid composites, due to fibre bridging, which is less pronounced in the hybrids as the presence of the beads results in a matrix-rich interply region.  相似文献   

20.
A new four-point bending plate (4PBP) test was used for characterising the mode III interlaminar fracture of carbon/epoxy laminates. The specimen has a cross-ply lay-up and two edge delaminations whose propagation becomes visible at the edges. Although the test setup is very simple, determination of the mode III critical strain energy release rate GIIIc requires finite element analyses (FEA). The virtual crack closure technique with an assumed initiation region was first proposed for computing GIIIc. This scheme was subsequently validated by crack growth simulations with a cohesive zone model. The results showed an average GIIIc = 1550 J/m2, which is significantly higher than the GIIIc = 850–1100 J/m2 and GIIc = 800 J/m2 measured in previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号