首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the European Union, electricity production from wind energy is projected to increase by approximately 16% until 2020. The Austrian energy plan aims at increasing the currently installed wind power capacity from approximately 1 GW to 3 GW until 2020 including an additional capacity of 700 MW until 2015. The aim of this analysis is to assess economically viable wind turbine sites under current feed-in tariffs considering constraints imposed by infrastructure, the natural environment and ecological preservation zones in Austria. We analyze whether the policy target of installing an additional wind power capacity of 700 MW until 2015 is attainable under current legislation and developed a GIS based decision system for wind turbine site selection.Results show that the current feed-in tariff of 9.7 ct kW h−1 may trigger an additional installation of 3544 MW. The current feed-in tariff can therefore be considered too high as wind power deployment would exceed the target by far. Our results indicate that the targets may be attained more cost-effectively by applying a lower feed-in tariff of 9.1 ct kW h−1. Thus, windfall profits at favorable sites and deadweight losses of policy intervention can be minimized while still guaranteeing the deployment of additional wind power capacities.  相似文献   

2.
Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined.  相似文献   

3.
《Energy Policy》2005,33(11):1397-1407
In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. During 2003, development activity has remained strong, with an estimated 1600 MW of capacity installed. With this growth, an increasing number of States are experiencing investment in wind energy projects: currently about half of all States host at least one wind power project. This paper explores the key factors at play in the 12 States in which a substantial amount of wind energy capacity has been developed or planned. Some of the factors that are examined include policy drivers, such as Renewable Portfolio Standards (RPS), Federal and State financial incentives; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.  相似文献   

4.
In India, the wind power generation has gained a high level of attention and acceptability compared to other renewable energy technologies. New technological developments in wind power design have contributed for the significant advances in wind energy penetration and to get optimum power from available wind. The yearly percentage increase in wind energy installation is highest for India and now ranks fourth in the world with an installed capacity of 6018 MW. This paper reviews the development of wind energy in India and five potential Indian states. The future growth pattern and time period to achieve the technical wind potential are predicted and analysed.  相似文献   

5.
This paper presents long-term analysis of wind speed data in terms of annual, seasonal and diurnal variations at Tindouf, which is situated on the south west region of Algeria. The wind speed data was collected over a period of 08 years between 1976 and 1984. The study showed that the long-term seasonal wind speeds were found to be relatively higher during September compared to other months. The diurnal change in long-term mean wind speed indicated that higher electricity could be produced during 09:00–18:00 h, which also coincides with higher electricity demand period. The annual wind energy production and capacity factor, obtained using wind speed frequency distribution and wind power curve of 1000 kW wind turbine and RETScreen software were found comparable with each other if unadjusted energy production values calculated by the software were used rather than the renewable energy delivered. Development of wind farm of 30 MW installed capacity at this site could result into avoidance of 23,252 tonnes/year of CO2 equivalents GHG from entering into the local atmosphere thus creating a clean and healthy atmosphere for local inhabitants.  相似文献   

6.
Economic development in recent decades has been characterised by the increased use of fossil fuels. Clearly, a significant amount of this energy does not fall in line with the principles of sustainable development, either because of its contaminating effect or because of its non-renewable nature.Today, Navarre generates around 60% of its electricity requirements by means of wind power and small hydropower stations. On the downside, Navarre's energy consumption is above average for the European Union and its economy is growing at an annual rate in excess of 5%. The Castejón (800 MW) thermal power stations, scheduled for enlargement, generate more energy than Navarre's entire wind power sector.In terms of hydroelectric power, there are around 200 small hydropower plants in operation. In addition, the Autonomous Community of Navarre has installed a biomass plant in Sangüesa, with an installed output of 25 MW, annually generating 200 GWh through the combustion of 160,000 t of cereal straw.In addition, Navarre, specifically Tudela, is the site of the largest solar energy plant in Spain, producing 1.2 MWp, following its connection to the grid at the beginning of the year. Two thirds of the 10,080 panels are arranged in a central body and the remaining third are panels pertaining to different technologists and technologies involved in research and development.  相似文献   

7.
The unsustainability of the present production–consumption energy model highlights the finite nature of conventional energy resources, as well as the environmental degradation inherent in such a model. Today's environmental policies are largely devoted to fostering the development and implementation in Europe of renewable energy technologies. This paper analyses the present and future situation of renewable energy resources in Andalusia in the south of Spain, and more specifically, of solar energy with an average potential radiation of 4.6±0.3 kW h/m2 per day. In Andalusia energy policies are generally implemented through regional development plans such as the Plan Energético de Andalucía (PLEAN)1 and the Programa Andaluz de Promoción de Energías Renovables (PROSOL).2 The principle objective of the latter programme is to implement and increase high-temperature solar thermal energy to 100 MW in 2006, even raising it to 230 MW in 2010. Regarding low-temperature solar thermal energy installations, there are plans to increase the quantity of m2/1000 installed per inhabitant from the present figure of 14 to a total of 142. Regarding individual installations of solar photovoltaic energy, the present aim is to cover 20.4% of the national objectives and 15% in installations connected to the electricity network. The geographic location of Andalusia in the south of Spain signifies that it is in a key position to play an important strategic role in the implementation of renewable energy technology in Europe, as well as providing sufficient energy for its own needs and even exporting such projects to other countries.  相似文献   

8.
In this paper current situation and future prospects of the use of wind energy and wind power resource assessment experience in Lithuania are reviewed. Installed wind power capacity has increased from 6.4 to 54.84 MW in Lithuania in 2006. During last five years wind power resource assessment was carried out, wind measurements were generalized and on the basis of obtained results Lithuanian wind resources map was developed. Measurements have shown that the most suitable region for building WT of big capacity is the 10 km wide coastal strip in Lithuania. The suitability of several existing WT sites was evaluated by the power output coefficient, which describes the efficiency of installed WT. The aim of this work is to present the current situation of wind energy development and the results of the investigation of wind climate conditions in the coastal region of the Baltic Sea in Lithuania.  相似文献   

9.
The activities in field of renewable energy in Iran are focused on scientific and research aspects, and research part is aimed at reduction of capital required for exploitation of related resources. The second step is to work research results into scientific dimension of this field for practical means, i.e. establishing electricity power plants. Due to recent advancements in wind energy, many investors in the country have become interested in investing in this type of energy. At the moment, projects assuming 130 MW of wind power plants are underway, of which, 25 MW is operational. Based on the planning in the 4th Socioeconomic and Cultural Development Plan (2005–2010), private sector is expected to have a share of at least 270 MW in renewable energies. However, it is the government's duty to take the first step for investment in biomass and solar power plants; private sector may then play its part once the infrastructures to this end are laid out. At the moment, a 250 kW plant is under construction in Shiraz and two more geothermal units with 5 and 50 MW capacities will follow. Moreover, two biomass and solar energy plants, standing at 10 and 17 MW, respectively, are of other upcoming projects. The project of Iran's renewable energy, aims to accelerate the sustainable development of wind energy through investment and removal of barriers. This preparatory project is funded by the global environment facility (GEF) and will provide for a number of international and national consultant missions and studies. Once the studies are concluded, a project to develop 25 MW of wind energy in the Manjil region of Gilan will be prepared. It will be consistent with the national development frameworks and objectives and form part of 100 MW of wind-powered energy, which is expected to be developed under the government's third 5-year national development plan (started 21 March 2000).  相似文献   

10.
This paper examines the current situation of wind industry development, evaluates the potentials of GHG mitigation and identifies the key determinants of scaling up wind power deployment in China. China has doubled its wind capacity every year for the past 4 years, the total installed capacity reached 12 Gigawatts (GW) and surpassed the 10-GW target 2 years ahead of schedule in the national plan for renewable energy development [38], [71], [87],and would reach 100–120 GW by 2020 according to the government’s new energy plan. It may become the biggest wind power generation and wind turbines manufacturing country of the world in the next years if the abundant wind resources and enormous domestic market can be harnessed with appropriate policies and efficient technology. The recent positive move in vigorous development of wind power in China implies that the total installed capacity will far exceed the targets of the government’s 2007 renewable energy plan. However, the prosperous Chinese wind market has also revealed some worrisome signals and weakness [28], [58], such as low capacity factor and frequent outage of wind farms, inadequate grid infrastructure, long distance transmission, low quality of turbines, adverse price bidding, nepotism in wind farm developer selection process and regulatory uncertainty and policy inconsistency which all conspire to hinder effective power generation in the massively new installed wind capacities. A coherent policy framework is required for creating enabling environment for accelerating wind energy penetration and state-of-art technology deployment in the country. It is argued that institutional, financial and technical capacity will need to be cemented to exploit the huge potentials of wind resources to meet the rapidly growing demand for electricity in China in the coming decades with minimised environmental implications.  相似文献   

11.
This research presents the MODERGIS Integrated Simulation's Platform as a tool to promote and develop renewable energy plans under sustainability criteria, in order to increment the participation of renewable technologies in the national “energy mix” and shows an application to Colombia as a case study. Potential zones of solar and wind energy and productive areas were determined for bio-energies, by means of a geographical information system which simulated energy scenarios influenced by climatic phenomena up to the year 2030. Results yield potentials of 26,600 MW in wind energy and 350,000 MW in solar energy. Bioenergy potentiates in a sustainable way of 366,310 km per biomass, 291,486 km in African palm, 9,667 km in sugar cane. These scenarios were simulated in a supply/demand with time horizons up until 2030, including an analysis of the effects on the energy systems of the El Niño Southern Oscillation atmospheric component (ENSO). Finally, in order to obtain an appropriate mix of renewable sources that could be introduced in the national energy mix, the Multi-Criteria Analysis method VIKOR was used, allowing to perform performing 5151 possible combinations of renewable projects; the optimal selection corresponds to 600 MW from wind power, 740 MW solar photovoltaic and 660 MW solar thermoelectric. Giving these results to the new scene allowed for incrementing the participation of renewable technologies up to a 0.23% in the current year and up to a 7% of the “energy mix” in the year 2030.  相似文献   

12.
The potential of biogas generation from anaerobic digestion of different waste biomass in India has been studied. Renewable energy from biomass is one of the most efficient and effective options among the various other alternative sources of energy currently available. The anaerobic digestion of biomass requires less capital investment and per unit production cost as compared to other renewable energy sources such as hydro, solar and wind. Further, renewable energy from biomass is available as a domestic resource in the rural areas, which is not subject to world price fluctuations or the supply uncertainties as of imported and conventional fuels. In India, energy demand from various sectors is increased substantially and the energy supply is not in pace with the demand which resulted in a deficit of 11,436 MW which is equivalent to 12.6% of peak demand in 2006. The total installed capacity of bioenergy generation till 2007 from solid biomass and waste to energy is about 1227 MW against a potential of 25,700 MW. The bioenergy potential from municipal solid waste, crop residue and agricultural waste, wastewater sludge, animal manure, industrial waste which includes distilleries, dairy plants, pulp and paper, poultry, slaughter houses, sugar industries is estimated. The total potential of biogas from all the above sources excluding wastewater has been estimated to be 40,734 Mm3/year.  相似文献   

13.
This paper presents some technical details, operational experiences, and lessons learnt by the Colombian public utility – Empresas Públicas de Medellín – with a recently installed 19.5 MW wind park in the northern region of Colombia – province of La Guajira. This is the first ever wind park feeding to the electricity network in Colombia. The Jepirachi Wind Park was commissioned in April 2004 and it has to date accumulated nearly 180,000 h of operation. During that time 15 NORDEX N60/1.3 MW turbines have fed electricity to the Colombian main electricity grid. This work describes the park layout, including meteorological stations installed in the surroundings and the wind regime prevailing in the zone. Details are also given about remote monitoring of the Wind Park and individual turbines, through the Supervisory, Control and Data Acquisition system (SCADA Nordex Control 2). Since July 2004, Empresas Públicas de Medellín (EEPPM) and Universidad de Los Andes-Bogotá, Colombia have been working together in a wind park performance monitoring programme. This has permitted both institutions to learn more rapidly matters relating to evaluation, planning and operation of wind parks exposed to extreme climatic conditions like those present in the semi-desert region of the Guajira. This work describes the wind park operation, where individual wind turbines have yielded monthly production capacity factors as high as 65–75%; values which are high when compared to similar turbines installed elsewhere. Accordingly, levels of electrical energy production of up to 1750 kWh/m2-year per turbine have been measured, exceeding typical values reported in the wind energy literature. A series of operational and technical troubles have become evident, which are related to some of the particular features of the climate and the wind regime at the site of the Jepirachi Wind Park. Because of these local features it is suggested that a greater level of uncertainty (limiting the validity of methods and hypotheses) may exist in the study and planning of future wind parks in regions such as La Guajira.  相似文献   

14.
This paper analyses the potential and the feasibility basis for the wind energy resources in some locations of coastal regions of Turkey. The dominant wind directions, the mean values, wind speeds, wind potential and the frequency distributions were determined. The results showed that Bal?kesir and Çanakkale among annual averages show higher value of mean wind speed. The mean annual value of Weibull shape parameter k is between 1.54 and 1.86 while the annual value of scale parameter c is between 2.52 m/s and 8.34 m/s. A technical assessment has been made of electricity generation from four wind turbines having capacity of 600 kW, 1500 kW, 2000 kW and 2500 kW. The yearly energy output and capacity factor for the four different turbines were calculated.  相似文献   

15.
《Journal of power sources》2006,162(2):943-948
This paper describes a novel method of modelling an energy store used to match the power output from a wind turbine and a solar PV array to a varying electrical load. The model estimates the fraction of time that an energy store spends full or empty. It can also estimate the power curtailed when the store is full and the unsatisfied demand when the store is empty. The new modelling method has been validated against time–stepping methods and shows generally good agreement over a wide range of store power ratings, store efficiencies, wind turbine capacities and solar PV capacities.Example results are presented for a system with 1 MW of wind power capacity, 2 MW of photovoltaic capacity, an energy store of 75% efficiency and a range of loads from 0 to 3 MW average.  相似文献   

16.
Analysis of the wind characteristics in Ras Benas city located on the east coast of Red Sea in Egypt using measured data (wind, pressure and temperature) and Weibull function were made.Statistical analysis model to evaluate the wind energy potential was introduced. According to the power calculations done for the site, the annual mean wind density is 315 kW/m2 at a height of 70 m above ground level. This station has a huge wind energy potential for electricity generation, especially during spring and summer seasons, comparing with some European countries.In addition, the monthly wind turbine efficiency parameter (ηmonthly) has been calculated by using a commercial wind turbine 1 MW with 70 m hub height to help designers and users in evaluating the potentialities and choosing the suitable wind turbine for the considered site. The use of wind turbine with capacity greater than 1000 kW at this station was recommended.Ras Benas station was selected to install 30 MW-wind farm consists of 20 commercial wind turbines (Nordex S 77) with hub heights and Rotor diameter were 100 and 77 m, respectively. This site has annual wind speed more than 9.8 m/s at 100 m height and enough area to locate these turbines.The estimated energy production using WASP Program of these wind farm was 130 GWh/year. Furthermore, the production costs was found 1.3€ cent/kWh, which is a competition price at the wind energy world market.  相似文献   

17.
This paper presents and discusses the wave climate off the Swedish west coast. It is based on 8 years (1997–2004) of wave data from 13 sites, nearshore and offshore, in the Skagerrak and Kattegat. The data is a product of the WAM and SWAN wave models calibrated at one site by a wave measurement buoy. It is found that the average energy flux is approximately 5.2 kW/m in the offshore Skagerrak, 2.8 kW/m in the nearshore Skagerrak, and 2.4 kW/m in the Kattegat. One of the studied sites, i.e. site 9, is the location of a wave energy research site run by the Centre for Renewable Electric Energy Conversion at Uppsala University. This site has had a wave power plant installed since the spring of 2006, and another seven are planned to be installed during 2008. Wave energy as a renewable energy source was the driving interest that led to this study and the results are briefly discussed from this perspective.  相似文献   

18.
Nova Scotia, Canada's community feed-in tariff (COMFIT) scheme is the world's first feed-in tariff program specifically targeting locally-based renewable energy projects. This study investigated selected turbine capacities to optimize electricity production, based on actual wind profiles for three sites in Nova Scotia, Canada (i.e., Sydney, Caribou Point, and Greenwood). The turbine capacities evaluated are also eligible under the current COMFIT-large scheme in Nova Scotia, including 100 kW, 900 kW and 2.0 MW turbines. A capital budgeting model was developed and then used to evaluate investment decisions on wind power production. Wind duration curves suggest that Caribou Point had the highest average wind speeds but for shorter durations. By comparison, Sydney and Greenwood had lower average wind speeds but with longer durations. Electricity production cost was lowest for the 2.0 MW turbine in Caribou Point ($0.07 per kWh), and highest for the 100 kW turbine located in Greenwood ($0.49 per kWh). The most financially viable wind power project was the 2.0 MW turbine assumed to operate at 80 m hub height in Caribou Point, with NPV=$251,586, and BCR=1.51. Wind power production for the remaining two sites was generally not financially feasible for the turbine capacities considered. The impact of promoting local economic development from wind power projects was higher in a scenario under which wind turbines were clustered at a single site with the highest wind resources than generating a similar level of electricity by distributing the wind turbines across multiple locations.  相似文献   

19.
The electric power generation of co-located offshore wind turbines and wave energy converters along the California coast is investigated. Meteorological wind and wave data from the National Buoy Data Center were used to estimate the hourly power output from offshore wind turbines and wave energy converters at the sites of the buoys. The data set from 12 buoys consists of over 1,000,000 h of simultaneous hourly mean wind and wave measurements. At the buoys, offshore wind farms would have capacity factors ranging from 30% to 50%, and wave farms would have capacity factors ranging from 22% to 29%. An analysis of the power output indicates that co-located offshore wind and wave energy farms generate less variable power output than a wind or wave farm operating alone. The reduction in variability results from the low temporal correlation of the resources and occurs on all time scales. Aggregate power from a co-located wind and wave farm achieves reductions in variability equivalent to aggregating power from two offshore wind farms approximately 500 km apart or two wave farms approximately 800 km apart. Combined wind and wave farms in California would have less than 100 h of no power output per year, compared to over 1000 h for offshore wind or over 200 h for wave farms alone. Ten offshore farms of wind, wave, or both modeled in the California power system would have capacity factors during the summer ranging from 21% (all wave) to 36% (all wind) with combined wind and wave farms between 21% and 36%. The capacity credits for these farms range from 16% to 24% with some combined wind and wave farms achieving capacity credits equal to or greater than a 100% wind farm because of their reduction in power output variability.  相似文献   

20.
The foreseen depletion of the traditional fossil fuels for the forthcoming decades is forcing us to seek for new sustainable and non-pollutant energy sources. Renewable energies rely on a decentralized scheme strongly dependent on the local resources availability. In this work, we tackle the study of the renewable energies potential for an intensive electricity production in the province of Jaén (southern Spain) which has a pronounced unbalance between its inner electricity production and consumption. The potential of biomass from olive pruning residues, solar photovoltaics (PV) and wind power has been analyzed using Geographical Information System tools, and a proposal for a massive implementation of renewable energies has been arisen. In particular, we propose the installation of 5 biomass facilities, totaling 98 MW of power capacity, with an estimated annual production of 763 GWh, 12 PV facilities, totaling 420 MW of power capacity, with an estimated annual production of 656 GWh and 506 MW of wind power capacity in a number of wind farms, with an estimated annual production of 825 GWh. Overall, this production frame would meet roughly a 75% of the electricity demands in the province and thus would mitigate the current unbalance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号