首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Nuclear power and carbon capture and storage (CCS) are key greenhouse gas mitigation options under consideration across the world. Both technologies imply long-term waste management challenge. Geological storage of carbon dioxide (CO2) and nuclear waste has much in common, and valuable lessons can be learnt from a comparison. Seeking to compare these technologies economic, social and environmental criteria need to be selected and expressed in terms of indicators. Very important issue is costs and economics of geological storage of carbon dioxide and nuclear waste. The costs of storage are one of the main indicators for assessment of technologies in terms of economic criteria.The paper defines the costs of the geological storage of CO2 and nuclear waste in Lithuania, drawing also on insights from other parts of the world. The costs of carbon dioxide and nuclear waste storage are evaluated in UScnt/kWh and compared. The paper critically compares the characteristics and location of the both sources of and storage options for CO2 and nuclear waste in Lithuania. It discusses the main costs categories for carbon dioxide and nuclear waste storage. The full range of potential geological storage options is considered and the most reliable options for carbon dioxide and nuclear waste are selected for the comparative costs assessment.  相似文献   

2.
3.
Secure, reliable and affordable energy supplies are necessary for sustainable economic growth, but increases in associated carbon dioxide (CO2) emissions, and the associated risk of climate change are a cause of major concern. Experts have projected that the CO2 emissions related to the energy sector will increase 130% by 2050 in the absence of new policies or supply constraints as a result of increased fossil fuel usage. To address this issue will require an energy technology revolution involving greater energy efficiency, increased renewable energies and nuclear power, and the near-decarbonisation of fossil fuel-based power generation. Nonetheless, fossil fuel usage is expected to continue to dominate global energy supply. The only technology available to mitigate greenhouse gas (GHG) emissions from large-scale fossil fuel usage is carbon capture and storage (CCS), an essential part of the portfolio of technologies that is needed to achieve deep global emission reductions. However, CCS technology faces numerous issues and challenges before it can be successfully deployed. With Malaysia has recently pledged a 40% carbon reduction by 2020 in the Copenhagen 2009 Climate Summit, CCS technology is seen as a viable option in order to achieve its target. Thus, this paper studies the potential and feasibility of coal-fired power plant with CCS technology in Malaysia which includes the choices of coal plants and types of capture technologies possible for implementation.  相似文献   

4.
Climate change is fast becoming the major environmental and energy concern worldwide. There is a major dilemma between the continued reliance on fossil fuel for our energy supply and the pressing need to address the problem of greenhouse gas (GHG) emissions from combustion process. This paper reviews the potential for carbon capture and storage (CCS) as a part of the climate change mitigation strategy for the Malaysian electricity sector using a technology assessment framework. The nation's historical trend of high reliance on fossil fuel for its electricity sector makes it a prime candidate for CCS adoption. The suitability and practicality of the technology was reviewed from a broad perspective with consideration of Malaysia-specific conditions. It is apparent from this assessment that CCS has the potential to play an important role in Malaysia's climate change mitigation strategy provided that key criteria are fulfilled.  相似文献   

5.
Among technological options to mitigate greenhouse gas (GHG) emissions, biomass energy with carbon capture and storage technology (BECCS) is gaining increasing attention. This alternative offers a unique opportunity for a net removal of atmospheric CO2 while fulfilling energy needs. Empirical studies using bottom-up energy models show that BECCS has an important role to play in the future energy mix. Most of these studies focus on global BECCS potential, whereas it is of interest to understand where this mitigation option will be deployed. This key issue will strongly depend on regions’ biomass resources and possession of storage sites. The aim of this study is to assess the global and regional potential of BECCS up to 2050 in power generation. This analysis is conducted using the multiregional TIAM-FR optimization model. The climate policy scenarios investigated lead to a considerable expansion of renewable energy and CCS and BECCS technologies in the power sector. CCS from fossil fuel is mainly deployed in fast developing countries (India and China) and BECCS is highly distributed in developing countries, even though biomass resources are widely available in all regions.  相似文献   

6.
The Well-to-Meter (WTM) analysis module in the Tsinghua-CA3EM model has been used to examine the primary fossil energy consumption (PFEC) and greenhouse gas (GHG) emissions for electricity generation and supply in China. The results show that (1) the WTM PFEC and GHG emission intensities for the 2007 Chinese electricity mix are 3.247 MJ/MJ and 297.688 g carbon dioxide of equivalent (gCO2,e)/MJ, respectively; (2) power generation is the main contributing sub-stage; (3) the coal-power pathway is the only major contributor of PFEC (96.23%) and GHG emissions (97.08%) in the 2007 mix; and (4) GHG emissions intensity in 2020 will be reduced to 220.470 gCO2,e/MJ with the development of nuclear and renewable energy and to 169.014 gCO2,e/MJ if carbon dioxide capture and storage (CCS) technology is employed. It is concluded that (1) the current high levels of PFEC and GHG emission for electricity in China are largely due to the dominant role of coal in the power-generation sector and the relatively low efficiencies during all the sub-stages from resource extraction to final energy consumption and (2) the development of nuclear and renewable energy as well as low carbon technologies such as CCS can significantly reduce GHG emissions from electricity.  相似文献   

7.
Climate change has become a global issue. Almost all countries, including China, are now considering adopting policies and measures to reduce greenhouse gas (GHG) emissions. The power generation sector, as a key source of GHG emissions, will also have significant potential for GHG mitigation. One of the key options is to use new energy technologies with higher energy efficiencies and lower carbon emissions. In this article, we use an energy technology model, MESSAGE-China, to analyze the trend of key new power generation technologies and their contributions to GHG mitigation in China. We expect that the traditional renewable technologies, high-efficiency coal power generation and nuclear power will contribute substantially to GHG mitigation in the short term, and that solar power, biomass energy and carbon capture and storage (CCS) will become more important in the middle and long term. In the meantime, in order to fully bring the role of technology progress into play, China needs to enhance the transfer and absorption of international advanced technologies and independently strengthen her ability in research, demonstration and application of new power generation technologies.  相似文献   

8.
The accident in Fukushima, Japan, in March 2011 has reactivated the discussion on how to meet ambitious climate mitigation objectives as some European countries reconsider the contribution of nuclear power in their energy mix. This study evaluates the impact of nuclear power reduction in Europe on the electricity mix under carbon emission reduction scenarios while considering the availability of carbon capture and storage technological options (CCS). The potential cost of carbon reduction is also addressed using the bottom-up optimization model TIAM-FR. The results suggest that CCS technologies constitute an interesting option in a case of stringent climate targets and limited nuclear electricity. However, the unavailability of CCS technologies induces a significant increase in carbon marginal cost and energy system cost to achieve the climate policy.  相似文献   

9.
There is wide public debate about which electricity generating technologies will best be suited to reduce greenhouse gas emissions (GHG). Sometimes this debate ignores real-world practicalities and leads to over-optimistic conclusions. Here we define and apply a set of fit-for-service criteria to identify technologies capable of supplying baseload electricity and reducing GHGs by amounts and within the timescale set by the Intergovernmental Panel on Climate Change (IPCC). Only five current technologies meet these criteria: coal (both pulverised fuel and integrated gasification combined cycle) with carbon capture and storage (CCS); combined cycle gas turbine with CCS; Generation III nuclear fission; and solar thermal backed by heat storage and gas turbines. To compare costs and performance, we undertook a meta-review of authoritative peer-reviewed studies of levelised cost of electricity (LCOE) and life-cycle GHG emissions for these technologies. Future baseload electricity technology selection will be influenced by the total cost of technology substitution, including carbon pricing, which is synergistically related to both LCOE and emissions. Nuclear energy is the cheapest option and best able to meet the IPCC timetable for GHG abatement. Solar thermal is the most expensive, while CCS will require rapid major advances in technology to meet that timetable.  相似文献   

10.
The increasing pressure resulting from the need for CO2 mitigation is in conflict with the predominance of coal in China’s energy structure. A possible solution to this tension between climate change and fossil fuel consumption fact could be the introduction of the carbon capture and storage (CCS) technology. However, high cost and other problems give rise to great uncertainty in R&D and popularization of carbon capture technology. This paper presents a real options model incorporating policy uncertainty described by carbon price scenarios (including stochasticity), allowing for possible technological change. This model is further used to determine the best strategy for investing in CCS technology in an uncertain environment in China and the effect of climate policy on the decision-making process of investment into carbon-saving technologies.  相似文献   

11.
Carbon capture and storage (CCS) covers a broad range of technologies that are being developed to allow carbon dioxide (CO2) emissions from fossil fuel use at large point sources to be transported to safe geological storage, rather than being emitted to the atmosphere. Some key enabling contributions from technology development that could help to facilitate the widespread commercial deployment of CCS are expected to include cost reductions for CO2 capture technology and improved techniques for monitoring stored CO2. It is important, however, to realise that CCS will always require additional energy compared to projects without CCS, so will not be used unless project operators see an appropriate value for reducing CO2 emissions from their operations or legislation is introduced that requires CCS to be used. Possible key advances for CO2 capture technology over the next 50 years, which are expected to arise from an eventual adoption of CCS as standard practice for all large stationary fossil fuel installations, are also identified. These include continued incremental improvements (e.g. many potential solvent developments) as well as possible step-changes, such as ion transfer membranes for oxygen production for integrated gasifier combined cycle and oxyfuel plants.  相似文献   

12.
Carbon capture and storage (CCS) is the only technology available to mitigate greenhouse gas (GHG) emissions from large-scale fossil fuel usage. U.S. and China are the world’s largest GHG emitters. Collaboration between the two nations, therefore, offers the greatest opportunity for achieving meaningful reductions in global GHG emissions. Two countries’ current cooperation on CCS through Clean Energy Research Center based on the U.S.–China Strategic Forum on Clean Energy Cooperation mechanism provides an important initial step towards even closer and stronger cooperation in the future. In this paper, we justify such possibility by discourse on the seemly different but complementary social–political context in two countries including political system, government structure, economic policy, national innovation system, energy strategy, and energy market structure. We further address the key elements of future cooperation model by carefully considering the principle of equality and mutual beneficiary, the role of two countries in the whole value chain according to their comparative advantages, and the scale and mechanism of the funding. A milestone for the cooperation until 2030 is drafted and priority areas for both countries in the cooperation are identified. Such cooperation will provide the imperative leadership for global climate change and speed up the global CCS deployment.  相似文献   

13.
The rapid application of carbon capture and storage (CCS) is a much heralded means to tackle emissions from both existing and future sources that, however, simply may not deliver the expected benefits. Apart from some doubts about the efficacy of the geological storage, the present stall in deploying carbon capture and storage (no fossil-fuel power plants, the greatest source of carbon dioxide emissions, are presently using carbon capture and storage, and publicly supported demonstration programmes are struggling to deliver actual projects) is due to the simple fact that the move to carbon capture and storage would have considerable additional costs for the economy and the environment that would very likely offset all the benefits.  相似文献   

14.
Jia Li  Xi Liang  Tim Cockerill 《Energy》2011,36(10):5916-5924
China has been building approximately 1 GW of new coal-fired power plant per week since 2005. Power plants now in construction may continue to operate until 2040. “CCS (Carbon Capture and Storage) Ready” enables and eases the subsequent retrofitting of a plant to be able to capture carbon dioxide later in that plant’s lifetime. Building on the definitions of the IEA GHG (IEA Greenhouse Gas Programme) and GCCSI (Global Carbon Capture and Storage Institute), this study suggests a novel concept ‘CCS Ready Hub’ for implementing CCS Ready. A CCS Ready Hub not only includes a number of new coal-fired power plants but also integrates other existing stationary carbon dioxide emissions sources into the planning for potential infrastructure. We conducted a case study of Guangdong province in China with a detailed engineering and economic assessment in Shenzhen City. The study first reviewed the potential storage sites and analysed the existing stationary emissions sources in Guangdong using a GIS (Geographic Information System) approach. Thereafter, we focused on investigating the economic benefits of a ‘CCS Ready Hub’ at a potential 4 GW new USCPC (ultra-supercritical pulverised coal-fired) power plant in Shenzhen. Using the cost of carbon dioxide avoidance in 2020 as a criterion, we found that the concept of a CCS Ready Hub to finance CCS Ready at a regional planning level rather than at an individual plant is preferred since it significantly reduces the overall cost of building an integrated CCS system to reduce carbon emissions in the future.  相似文献   

15.
Carbon capture and storage (CCS) facilities coupled to power plants provide a climate change mitigation strategy that potentially permits the continued use of fossil fuels whilst reducing the carbon dioxide (CO2) emissions. This process involves three basic stages: capture and compression of CO2 from power stations, transport of CO2, and storage away from the atmosphere for hundreds to thousands of years. Potential routes for the capture, transport and storage of CO2 from United Kingdom (UK) power plants are examined. Six indicative options are evaluated, based on ‘Pulverised Coal’, ‘Natural Gas Combined Cycle’, and ‘Integrated (coal) Gasification Combined Cycle’ power stations. Chemical and physical CO2 absorption capture techniques are employed with realistic transport possibilities to ‘Enhanced Oil Recovery’ sites or depleted gas fields in the North Sea. The selected options are quantitatively assessed against well-established economic and energy-related criteria. Results show that CO2 capture can reduce emissions by over 90%. However, this will reduce the efficiency of the power plants concerned, incurring energy penalties between 14 and 30% compared to reference plants without capture. Costs of capture, transport and storage are concatenated to show that the whole CCS chain ‘cost of electricity’ (COE) rises by 27-142% depending on the option adopted. This is a significant cost increase, although calculations show that the average ‘cost of CO2 captured’ is £15/tCO2 in 2005 prices [the current base year for official UK producer price indices]. If potential governmental carbon penalties were introduced at this level, then the COE would equate to the same as the reference plant, and make CCS a viable option to help mitigate large-scale climate change.  相似文献   

16.
《Applied Energy》2005,82(3):214-227
Within five years from now, Lithuania is going to close down Ignalina, the only nuclear-power plant in the country. Since Ignalina generates more than 75% of the Lithuanian electricity production, new generation capacities are needed. Traditional steam-turbines, fuelled with fossil fuels, would mean further imports of fuel as well as a rise in CO2 emissions. At the same time, several small district-heating companies one suffering from high heating-prices. Typically, the price in small towns is 20–50% higher than the price in large urban areas. Consequently, alternative strategies should be considered. This article analyses the conditions for one such strategy, namely the replacement of boilers in the existing district-heating supplies with combined heat-and-power production (CHP). Compared with new power stations, fuel can be saved and CO2-emissions reduced. Also this strategy can be used to level the difference between low heating prices in the large urban areas and high prices in small towns and villages.  相似文献   

17.
Relying on real options theory, we employ a multistage decision model to analyze the effect of delaying the introduction of emission trading systems (ETS) on power plant investments in carbon capture and storage (CCS) retrofits, on plant operation, and on carbon dioxide (CO2) abatement. Unlike previous studies, we assume that the investment decision is made before the ETS is in place, and we allow CCS operating flexibility for new power plant investments. Thus, the plant may be run in CCS-off mode if carbon prices are low. We employ Monte Carlo simulation methods to account for uncertainties in the prices of CO2 certificates, other inputs, and output prices, relying on a realistic parameterization for a supercritical pulverized coal plant in China. We find that CCS operating flexibility lowers the critical carbon price needed to support CCS investment because it renders CCS investment less irreversible. For a low carbon price path, operating flexibility also implies that delaying the introduction of an ETS hardly affects plant CO2 abatement since the plant operator is better off purchasing emission certificates rather than operating the plant in CCS mode. Interestingly, for low carbon prices we find a U-shaped relation between the length of the delay and the economic value of the plant. Thus, delaying the introduction of an ETS may make investors worse off.  相似文献   

18.
Electricity generation contributes a large proportion of the total greenhouse gas emissions in the United Kingdom (UK), due to the predominant use of fossil fuel (coal and natural gas) inputs. Indeed, the various power sector technologies [fossil fuel plants with and without carbon capture and storage (CCS), nuclear power stations, and renewable energy technologies (available on a large and small {or domestic} scale)] all involve differing environmental impacts and other risks. Three transition pathways for a more electric future out to 2050 have therefore been evaluated in terms of their life-cycle energy and environmental performance within a broader sustainability framework. An integrated approach is used here to assess the impact of such pathways, employing both energy analysis and environmental life-cycle assessment (LCA), applied on a ‘whole systems’ basis: from ‘cradle-to-gate’. The present study highlights the significance of ‘upstream emissions’, in contrast to power plant operational or ‘stack’ emissions, and their (technological and policy) implications. Upstream environmental burdens arise from the need to expend energy resources in order to deliver, for example, fuel to a power station. They include the energy requirements for extraction, processing/refining, transport, and fabrication, as well as methane leakage that occurs in coal mining activities – a major cotribution – and from natural gas pipelines. The impact of upstream emissions on the carbon performance of various low carbon electricity generators [such as large-scale combined heat and power (CHP) plant and CCS] and the pathways distinguish the present findings from those of other UK analysts. It suggests that CCS is likely to deliver only a 70% reduction in carbon emissions on a whole system basis, in contrast to the normal presumption of a 90% reduction. Similar results applied to other power generators.  相似文献   

19.
CO2 capture and storage (CCS) is receiving considerable attention as a potential greenhouse gas (GHG) mitigation option for fossil fuel power plants. Cost and performance estimates for CCS are critical factors in energy and policy analysis. CCS cost studies necessarily employ a host of technical and economic assumptions that can dramatically affect results. Thus, particular studies often are of limited value to analysts, researchers, and industry personnel seeking results for alternative cases. In this paper, we use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and current costs of fossil fuel power plants with CCS on a systematic basis. This plant-level analysis explores a broader range of key assumptions than found in recent studies we reviewed for three major plant types: pulverized coal (PC) plants, natural gas combined cycle (NGCC) plants, and integrated gasification combined cycle (IGCC) systems using coal. In particular, we examine the effects of recent increases in capital costs and natural gas prices, as well as effects of differential plant utilization rates, IGCC financing and operating assumptions, variations in plant size, and differences in fuel quality, including bituminous, sub-bituminous and lignite coals. Our results show higher power plant and CCS costs than prior studies as a consequence of recent escalations in capital and operating costs. The broader range of cases also reveals differences not previously reported in the relative costs of PC, NGCC and IGCC plants with and without CCS. While CCS can significantly reduce power plant emissions of CO2 (typically by 85–90%), the impacts of CCS energy requirements on plant-level resource requirements and multi-media environmental emissions also are found to be significant, with increases of approximately 15–30% for current CCS systems. To characterize such impacts, an alternative definition of the “energy penalty” is proposed in lieu of the prevailing use of this term.  相似文献   

20.
In Lithuania, the generation of electricity is based on the nuclear energy and on the fossil fuels. After the decommissioning of Ignalina nuclear power plant in 2009, the Lithuanian Power Plant and other thermal plants will become the major sources of electricity. Consequently, the Lithuanian power sector must focus on the implementation of renewable energy projects, penetration of new technologies and on consideration of the future opportunities for renewables, and Government policy for promoting this kind of energy. Production of electricity from renewable energy is based on hydro, biomass and wind energy resources in Lithuania. Due to the typical climatic condition in Lithuania the solar photovoltaics and geothermal energy are not used for power sector. Moreover, the further development of hydropower plants is limited by environmental restrictions, therefore priority is given to wind energy development and installation of new biomass power plants. According to the requirements set out in the Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market [Official Journal L283, 33–40, 27 October 2001], 7% of gross consumption of electricity will be generated from renewable energy by 2010 in Lithuania. The aim of this paper is to show the estimation of the maximum renewable power penetration in the Lithuanian electricity sector and possible environmental impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号