首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blasting is still being considered to be one the most important applicable alternatives for conventional tunneling. Ground vibration generated due to blasting is an undesirable phenomenon which is harmful for the nearby habitants and dwellings and should be prevented. In this paper, an attempt has been made to predict blast-induced ground vibration using artificial neural network (ANN) in the Siahbisheh project, Iran. To construct the model maximum charge per delay, distance from blasting face to the monitoring point, stemming and hole depth are taken as input parameters, whereas, peak particle velocity (PPV) is considered as an output parameter. A database consisting of 182 datasets was collected at different strategic and vulnerable locations in and around the project. From the prepared database, 162 datasets were used for the training and testing of the network, whereas 20 randomly selected datasets were used for the validation of the ANN model. A four layer feed-forward back-propagation neural network with topology 4-10-5-1 was found to be optimum. To compare performance of the ANN model with empirical predictors as well as regression analysis, the same database was applied. Superiority of the proposed ANN model over empirical predictors and statistical model was examined by calculating coefficient of determination for predicted and measured PPV. Sensitivity analysis was also performed to get the influence of each parameter on PPV. It was found that distance from blasting face is the most effective and stemming is the least effective parameter on the PPV.  相似文献   

2.
An attempt has been made to evaluate and predict the blast-induced ground vibration and frequency by incorporating rock properties, blast design and explosive parameters using the artificial neural network (ANN) technique. A three-layer, feed-forward back-propagation neural network having 15 hidden neurons, 10 input parameters and two output parameters were trained using 154 experimental and monitored blast records from one of the major producing surface coal mines in India. Twenty new blast data sets were used for the validation and comparison of the peak particle velocity (PPV) and frequency by ANN and other predictors. To develop more confidence in the proposed method, same data sets have also been used for the prediction of PPV by commonly used vibration predictors as well as by multivariate regression analysis (MVRA). Results were compared based on correlation and mean absolute error (MAE) between monitored and predicted values of PPV and frequency.  相似文献   

3.
Accomplishing construction projects successfully requires continuous monitoring and control by construction managers of factors critical to project success. This research proposed using an Evolutionary Support Vector Machine Inference Model (ESIM) to predict project success dynamically. ESIM is a hybrid that integrates a support vector machine (SVM) with a fast messy genetic algorithm (fmGA). SVM is concerned primarily with learning and curve fitting, while fmGA deals primarily with optimization. Furthermore, the model integrates the process of Continuous Assessment of Project Performance (CAPP) to select factors that influence project success. Training and test patterns were collected from a CAPP database of 46 construction projects. These projects represent real data collected by Russell from 16 company members of the Construction Industry Institute (CII). Results show that ESIM is able to predict project success at a significant level of accuracy.  相似文献   

4.
In the recent decades,effects of blast loads on natural and man-made structures have gained considerable attention due to increase in threat from various man-made activities.Site-specific empirical relationships for calculation of blast-induced vibration parameters like peak particle velocity(PPV) and peak particle displacement(PPD) are commonly used for estimation of blast loads in design.However,these relationships are not able to consider the variation in rock parameters and uncertainty of in situ conditions.In this paper,a total of 1089 published blast data of various researchers in different rock sites have been collected and used to propose generalized empirical model for PPV by considering the effects of rock parameters like unit weight,rock quality designation(RQD),geological strength index(GSI),and uniaxial compressive strength(UCS).The proposed PPV model has a good correlation coefficient and hence it can be directly used in prediction of blast-induced vibrations in rocks.Standard errors and coefficient of correlations of the predicted blast-induced vibration parameters are obtained with respect to the observed field data.The proposed empirical model for PPV has also been compared with the empirical models available for blast vibrations predictions given by other researchers and found to be in good agreement with specific cases.  相似文献   

5.
6.
The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity (PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further, the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%.  相似文献   

7.

The phenomenon of soil liquefaction is one of the most complex and interesting fields in geotechnical earthquakes that has drawn the attention of many researchers in recent years. The present study used hybrid particle swarm optimization and genetic algorithms with a fuzzy support vector machine (FSVM) as the classifier for the soil liquefaction prediction problem. Fuzzy logic is used to decrease the outlier sensitivity of the system by inferring the importance of each sample in the training phase to increase the ability of the classifier’s generalization. Using the appropriate combination of optimization algorithms, we can find the best parameters for the classifier during the training phase without the need for trial and error by the user due to the high accuracy of the classifier. The proposed approach was tested on 109 CPT-based field data from five major earthquakes between 1964 and 1983 recorded in Japan, China, the USA and Romania. Good results have been demonstrated for the proposed algorithm. Classification accuracy is 100% for the combination of the optimization algorithms with the FSVM classifier. The results show that the best kernel used in the training of the FSVM classifier is a radial basis function (RBF). According to the experimental results, the proposed algorithm can improve classification accuracy and that it is a feasible method for predicting soil liquefaction using the optimal parameters of the classifier with no user interface.

  相似文献   

8.
苏华  汪在芹 《山西建筑》2007,33(4):284-285
介绍了支持向量机算法及围岩破坏模式识别的支持向量机算法,利用支持向量法分类算法对隧道围岩超挖块体的大小进行了分类,并建立了预测模型,计算结果表明用支持向量机能较好地预测超挖块体的大小。  相似文献   

9.
The financial health of construction contractors is critical in successfully completing a project, and thus default prediction is highly concerned by owners and other stakeholders. In other industries many previous studies employ support vector machine (SVM) or other Artificial Neural Networks (ANN) methods for corporate default prediction using the sample-matching method, which produces sample selection biases. In order to avoid the sample selection biases, this paper used all available firm-years samples during the sample period. Yet this brings a new challenge: the number of non-defaulted samples greatly exceeds the defaulted samples, which is referred to as between-class imbalance. Although the SVM algorithm is a powerful learning process, it cannot always be applied to data with extreme distribution characteristics. This paper proposes an enforced support vector machine-based model (ESVM model) for the default prediction in the construction industry, using all available firm-years data in our sample period to solve the between-class imbalance. The traditional logistic regression model is provided as a benchmark to evaluate the forecasting ability of the ESVM model. All financial variables related to the prediction of contractor default risk as well as 7 variables selected by the Multivariate Discriminant Analysis (MDA) stepwise method are put in the models for comparison. The empirical results of this paper show that the ESVM model always outperforms the logistic regression model, and is more convenient to use because it is relatively independent of the selection of variables. Thus, we recommend the proposed ESVM model as an alternative to the traditionally used logistic model.  相似文献   

10.
基于支持向量机的建筑物空调负荷预测模型   总被引:1,自引:0,他引:1  
李琼  孟庆林  吉野博  持田灯 《暖通空调》2008,38(1):14-18,120
建立了基于支持向量机(SVM)理论的建筑物空调负荷预测模型.对广州地区某办公楼夏季不同月份的逐时空调负荷,分别用SVM模型和BP神经网络模型进行了训练和预测.仿真结果表明,SVM模型具有更高的预测精度和更好的泛化能力,是建筑物空调负荷预测的一种有效方法.  相似文献   

11.
林之恒 《山西建筑》2009,35(31):77-78
根据岩爆预测的特性,引入了支持向量机SVM的新方法,研究了支持向量机的基本原理及其在岩爆预测中的模型建立,通过某工程的实际应用证明:支持向量机在岩爆预测中取得了较好的效果。  相似文献   

12.
In the reliability analysis of tunnels, the limited state function is implicit and nonlinear, and is difficult to apply based on the traditional reliability method, especially for large-scale projects. Least squares support vector machines (LS-SVM) are capable of approximating the limited state function without the need for additional assumptions regarding the function form, in comparison to traditional polynomial response surfaces. In the present work, the LS-SVM method was adapted to obtain the limited state function. An LS-SVM-based response surface method (RSM), combined with the first-order reliability method (FORM), is proposed for use in tunnel reliability analysis and implementation of the method is described. The reliability index obtained from the proposed method applied to particular tunnel configurations under different conditions shows excellent agreement with Low and Tang’s (2007) method and traditional RSM results, and indicates that the LS-SVM-based RSM is an efficient and effective approach for reliability analysis in tunnel engineering.  相似文献   

13.
The aim of this paper is reducing the responses of structures under the mine blast-induced ground motion by using semi-active tools. In other words, the objective of this study is to provide a method to reduce the destructive effects of underground mine-blast excitation. Investigating the behavior of structures under the mine blast excitation is essential because some buildings are subjected to the blast load of mines due to the rapid urbanization in different regions. Also, the importance of studying this excitation, based on the distinctive nature of mine blast-induced underground motion, becomes more apparent. For proper investigation and comparison of responses, a seismic excitation is considered. To reduce the responses of two proposed shear structures, magnetorheological (MR) and orifice dampers are utilized. The optimum location for these dampers is investigated. To generate the optimal force each time step the clipped-optimal algorithm is used based on the input force. The control force can be changed by adjusting the input voltage and magnetic field of dampers. In this research, structural responses based on optimal and maximum voltage are scrutinized. The results indicated that the proposed method is appropriate for reducing the responses of structures under the mine blast-induced ground motion and seismic excitation.  相似文献   

14.
介绍了人工智能领域最新的基于结构风险最小化原理的数据挖掘算法---支持向量机算法,运用Matlab语言编写了程序,采用不同的核函数对具体的边坡工程实例作了计算,并将人工神经元网络计算结果与之对比,可见无论是在学习或预测精度方面,支持向量机算法较基于经验风险最小化原理的人工神经元网络算法都有很大的优越性,可以运用于实际工程。  相似文献   

15.
张军  殷青 《混凝土》2012,(2):55-56,62
建筑混凝土的强度受多种因素的影响,其强度的预测是一个多指标综合复杂问题。基于机器算法支持向量机建立了建筑混凝土的强度设计与预测的支持向量机模型,其中模型参数通过粒子群算法进行选择和优化。将建立的模型计算结果与实测混凝土28 d抗压强度进行比较,讨论了各因素与强度值之间的关系。研究表明:预测结果与实测结果一致,可见该模型可以很好的为混凝土设计提供依据。  相似文献   

16.
《Planning》2015,(2)
有效的软件缺陷预测能够显著提高软件安全测试的效率,确保软件质量,支持向量机(support vector machine,SVM)具有非线性运算能力,是建立软件缺陷预测模型的较好方法,但其缺少统一有效的参数寻优方法。本文针对该问题提出一种基于遗传优化支持向量机的软件缺陷预测模型,将支持向量机作为软件缺陷预测的分类器,利用遗传算法进行最优度量属性的选择和支持向量机最优参数的计算。实验结果表明,基于遗传优化支持向量机的软件缺陷预测模型具有较高的预测准确度。  相似文献   

17.
ABSTRACT

This paper presents an artificial neural network (ANN) based mathematical model for the prediction of blast-induced ground vibrations using the data obtained from the literature. A feed-forward back-propagation multi-layer perceptron (MLP) was adopted, and the Levenberg–Marquardt algorithm was used in training the network. The powder factor, the maximum charge per delay, and distance from blasting face to monitoring point are the input variables. The peak particle velocity (PPV) is the targeted output variable. The model was then formulated using the weights and biases output from the ANN simulation. Multilinear regression (MLR) analysis was also performed using the same number of datasets, as in the case of ANN. The quality of the proposed ANN-based model was also tested with another 14 datasets outside the one used in developing the models and compared with more classical models. The coefficient of the determination (R2) of the proposed ANN-based model was the highest.  相似文献   

18.
For ground-level ozone (O(3)) prediction, a predictive model, with reliable performance not only on non-polluted days but, more importantly, on polluted days, is favored by public authorities to issue alerts, so that concerned citizens and industrial organizations could take precautions to avoid exposure and reduce harmful emissions. However, the class imbalance problem, i.e., in some collected field data, number of O(3) polluted days are much smaller than that of non-polluted days, will deteriorate the model performance on minority class-O(3) polluted days. Despite support vector machine (SVM) obtaining promising results in air quality prediction, in this study, a cost-sensitive classification scheme is proposed for the standard support vector classification model (S-SVC) in order to investigate whether the class imbalance plagues S-SVC. The S-SVC with such scheme is named as CS-SVC. Experiments on imbalanced data sets collected from two air quality monitoring sites in Hong Kong show that 1) S-SVC is still sensitive to class imbalance problem; 2) compared with S-SVC, CS-SVC effectively avoids class imbalance problem with lower percentage of false negative on O(3) polluted days but with higher percentage of false positive on non-polluted days; 3) compared with both S-SVC and CS-SVC, support vector regression model (SVR), after converting its output to binary one, only has similar performance with S-SVC, which indicates class imbalance problem also impairs the regressor model. From point of protecting public health, CS-SVC, which less likely misses to forecast O(3) polluted days, is recommended here.  相似文献   

19.
根据收集到的钢骨高强混凝土短柱的延性试验数据,建立了预测模型,并采用最小二乘支持向量机的方法,对其延性进行仿真试验,指出在合理选择参数的前提下,最小二乘支持向量机法预测钢骨高强混凝土短柱的延性可达到满意的结果。  相似文献   

20.
In this paper, the machine learning (ML) model is built for slope stability evaluation and meets the high precision and rapidity requirements in slope engineering. Different ML methods for the factor of safety (FOS) prediction are studied and compared hoping to make the best use of the large variety of existing statistical and ML regression methods collected. The data set of this study includes six characteristics, namely unit weight, cohesion, internal friction angle, slope angle, slope height, and pore water pressure ratio. The whole ML model is primarily divided into data preprocessing, outlier processing, and model evaluation. In the data preprocessing, the duplicated data are first removed, then the outliers are filtered by the LocalOutlierFactor method and finally, the data are standardized. 11 ML methods are evaluated for their ability to learn the FOS based on different input parameter combinations. By analyzing the evaluation indicators R 2, MAE, and MSE of these methods, SVM, GBR, and Bagging are considered to be the best regression methods. The performance and reliability of the nonlinear regression method are slightly better than that of the linear regression method. Also, the SVM-poly method is used to analyze the susceptibility of slope parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号