首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Imidazolium poly(butylene terephthalate) ionomers with ionic groups located randomly along the polymer chain or selectively as end-groups (telechelic) have been prepared in order to determine their antimicrobial (AM) activity. Two different approaches have been followed for the linkage of the imidazolium to the polymer backbone: a covalent bond and an ionic aggregation to sulfonated groups covalently bonded to the polymer. The ionic groups have been linked to the polymer in order to improve the long-term AM activity since the low molecular weight additives commonly used tends to migrate toward the surface during use. We have found that imidazolium ionomers present AM activity comparable with that of commercial antimicrobial agents such as Triclosan. The AM activity depends on the polymer architecture, the telechelic approach being more active compared to the random approach. We have proved that imidazolium ionomers retain their high AM activity even after 6 days in water at 60 °C while Triclosan consistently loses his activity.  相似文献   

2.
Poly(butylene terephthalate) ionomers with imidazolium groups selectively located as end-groups (telechelic) have been prepared by melt polycondensation adding a hydroxyl derivatized imidazolium salt at the beginning of the polymerization process. The design of the chemical structure of the imidazolium salt is of fundamental importance in order to achieve the synthesis of ionomers with good thermo-mechanical properties. The final ionomers present high molecular weight, good color, transparency and thermal stability. Imidazolium ionomers present good antimicrobial (AM) properties comparable with those of commercial AM agents. The incorporation of the ionic groups in the polymer chain prevents their migration during use and therefore the antimicrobial activity can be preserved for longer time.  相似文献   

3.
Poly(butylene terephthalate-co-thiodiethylene terephthalate) copolymers of various compositions were synthesized and characterized in terms of chemical structure and molecular weight. The thermal behavior was examined by thermogravimetric analysis and differential scanning calorimetry. All the polymers under investigation show a good thermal stability. At room temperature they appear as semicrystalline materials: the main effect of copolymerization was a lowering in the amount of crystallinity and a decrease of melting temperature with respect to homopolymers. A pure crystalline phase has been evidenced at high content of butylene terephthalate or thiodiethylene terephthalate units and Baur's equation was found to describe well the Tm-composition data. Amorphous samples (containing 50-100 mol% of thiodiethylene terephthalate units) showed a monotonic decrease of Tg as the content of sulfur-containing units is increased, due to the presence of flexible C-S-C bonds in the polymeric chain. Finally, the Fox equation described well the Tg-composition data.  相似文献   

4.
A route to synthesizing novel poly(vinyl butyral) ionomers (IPVB), via a condensation polymerization process, has been developed. In the process, ionic groups were permanently incorporated into the poly(vinyl butyral) backbone by using an ion-containing aldehyde in addition to butyraldehyde during the acetalization of poly(vinyl alcohol). The resulting polymers demonstrated properties typical of ionomer systems, i.e., they behaved as “thermally reversible crosslinked thermoplastics” due to the presence of ionic associations present in the polymers. The ionic associations enabled the polymers to behave as crosslinked materials at ambient temperatures, whereas, at higher temperatures (processing temperatures), the ionic associations were lost, thus allowing the polymers to flow. Consequently, at ambient temperatures, the IPVBs demonstrated increased stiffness as determined from the storage modulus of the polymers, whereas, at higher temperatures, the IPVBs demonstrated moduli and stress-relaxation properties comparable to those of conventional poly(vinyl butyral). The IPVBs were characterized by a number of techniques including, high resolution NMR spectroscopy (1H, 13C), dilute solution viscometry, dynamic mechanical analysis, and differential scanning calorimetry (DSC). Characterization was done on plasticized and unplasticized IPVBs.  相似文献   

5.
Commercial grade poly(ethylene terephthalate), (PET, intrinsic viscosity = 0.80 dL/g) and poly(butylene terephthalate), (PBT, intrinsic viscosity = 1.00 dL/g) were melt blended over the entire composition range using a counterrotating twin‐screw extruder. The mechanical, thermal, electrical, and rheological properties of the blends were studied. All of the blends showed higher impact properties than that of PET or PBT. The 50:50 blend composition exhibited the highest impact value. Other mechanical properties also showed similar trends for blends of this composition. The addition of PBT increased the processability of PET. Differential scanning calorimetry data showed the presence of both phases. For all blends, only a single glass‐transition temperature was observed. The melting characteristics of one phase were influenced by the presence of the other. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 75–82, 2005  相似文献   

6.
Layered‐silicate‐based polymer–clay nanocomposite materials were prepared depending on the surface modification of montmorillonite (MMT). Nanocomposites consisting of poly(butylene terephthalate) (PBT) as a matrix and dispersed inorganic clay modified with cetyl pyridinium chloride (CPC), benzyl dimethyl N‐hexadecyl ammonium chloride, and hexadecyl trimethyl ammonium bromide by direct melt intercalation were studied. The organoclay loading was varied from 1 to 5 wt %. The organoclays were characterized with X‐ray diffraction (XRD) to compute the crystallographic spacing and with thermogravimetric analysis to study the thermal stability. Detailed investigations of the mechanical and thermal properties as well as a dispersion study by XRD of the PBT/clay nanocomposites were conducted. X‐ray scattering showed that the layers of organoclay were intercalated with intercalating agents. According to the results of a differential scanning calorimetry analysis, clay acted as a nucleating agent, affecting the crystallization. The PBT nanocomposites containing clay treated with CPC showed good mechanical properties because of intercalation into the polymer matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
The viscous and elastic properties of linear high density polyethylene (HDPE), poly(butylene terephthalate) (PBT), and poly(ethylene terephthalate) (PET) are investigated using an Instron capillary rheometer and the Philippoff–Gaskins–Bagley analysis. The viscous properties studied are the shear viscosity and the constant shear rate activation energy and the elastic properties studied are the entrance pressure drop and the end correction. The variables are shear rate and temperature. The order of decreasing viscosity is HDPE>PET>PBT; the order of decreasing activation energy is PB>PET>HDPE; the order of decreasing entrance pressure drop is HDPE>PET>PBT; and the order of decreasing end correction is PBT>PET>HDPE. As temperature increases, both viscosity and entrance pressure drop decrease. The observed behavior is discussed in terms of the difference in number of terephthalic acid moities in the polymer chains and in terms of oligomer plasticization.  相似文献   

8.
The focus of this study was mainly on the use of scrap poly(ethylene terephthalate) (PET) in poly(butylene terephthalate)‐rich blend systems. A good combination of tensile and impact properties was observed in the newly formed blend system with scrap PET. The morphology depicted controlled and well‐dispersed phases. The thorough mixing of the constituents was observed in the thermal study. For this innovative blend system, an attempt to correlate the mechanical, thermal, structural, morphological properties and the chemistry of the blend system seemed to be technoeconomical. This study contributed to the recycling of waste material. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
The hydrolytic stability of poly(butylene terephthalate) (PBT) resins and compounds was studied. Rates of reaction were determined by measuring changes in melt flow rate. Hydrolysis was slightly accelerated by contact of PBT with glass containers and reduced by incorporation of some flame retardant additives. Melt flow rates were related to tensile elongation ofunfilled PBT and tensile strength ofthe glass fiber reinforced polymer and used as failure criteria. Reaction rates were used to predict failure times at various conditions.  相似文献   

10.
This article provides a thorough analysis of the crystallization process of poly(butylene terephthalate) (PBT). Isothermal crystal growth rates have been experimentally measured between 459 and 491 K, and analyzed according to the Hoffman and Lauritzen theory. A II–III regime transition occurs at 484 K, accompanied by a change in crystal morphology. By means of a non‐linear fitting procedure, precise values of the nucleation constant Kg were obtained. The lateral surface free energy σ was calculated and, from this, the α parameter of the Thomas‐Staveley expression was obtained.  相似文献   

11.
Summary The crystallization and melting behaviour of poly(butylene terephthalate) has been studied in the pure state and in its blends with a polyarylate of bisphenol A and isophthalic/terephthalic acids. Differential scanning calorimetry has been used as experimental technique and the effects of different thermal treatments have been analyzed. Results show the hindrance for the crystallization of poly(butylene terephthalate) imposed by the presence of polyarylate, as well as the existence of multiple melting after isothermal crystallization. Explanations are given for the observed behaviours.  相似文献   

12.
Blends composed of poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) were melt-mixed in a Brabender cam mixer at different mixing speeds. The glass transition (Tg) and the crystallization behavior of the blends from glassy state were studied using DSC. It was found that although the blends had the same composition and exhibited the similar Tg, their properties of crystallization could be different; some exhibited a single crystallization peak and some exhibited multiple crystallization peaks depending upon experimental conditions. Results indicated that the behavior of crystallization from glassy state were influenced by entanglement and transesterification of chains. The crystallization time values were obtained over a wide range of crystallization temperature. From curve fitting, the crystallization time values and the temperature, at which the crystallization rate reaches the maximum, were found.  相似文献   

13.
C. Lorenzetti  N. Lotti  M. Vannini  C. Berti 《Polymer》2005,46(12):4041-4051
Poly(propylene terephthalate/2,6-naphthalate) random copolyesters (PPT-PPN) were synthesized and characterized from the molecular and thermal point of view. All the polymers showed a good thermal stability. The main effect of copolymerization was a lowering in the crystallinity and a decrease of Tm respect to homopolymers. WAXD measurements indicated that PPT-PPN copolymers are characterized by isodimorphic cocrystallization. The defect free energies, calculated on the basis of the inclusion model proposed by Wendling and Suter, indicated that the amount of PT units incorporated in the poly(propylene 2,6-naphthalate) (PPN) β crystals is higher than the amount of PN units which cocrystallizes in the poly(propylene terephthalate) (PPT) crystalline phase, probably due to the larger molar volume of PN units compared to PT ones. Amorphous samples showed a monotonic increment of Tg as the content of PN units is increased, due to the stiffening effect of naphthalene rings in the chain. Finally, the Fox equation described well the Tg-composition data.  相似文献   

14.
Poly(butylene terephthalate), poly(butylene azelate), and poly(butylene terephthalate/butylene azelate) random copolymers of various compositions were synthesized in bulk using the well‐known two‐stage polycondensation procedure, and characterized in terms of chemical structure and molecular weight. The thermal behavior was examined by thermogravimetric analysis and differential scanning calorimetry. As far as the thermal stability is concerned, it was found to be rather similar for all copolymers and homopolymers investigated. All the copolymers were found to be partially crystalline, and the main effect of copolymerization was a lowering in the amount of crystallinity and a decrease of melting temperature with respect to pure homopolymers. Flory's equation was found to describe the Tm–composition data and permitted to calculate the melting temperatures (T°m ) and the heats of fusion (ΔHu) of both the completely crystalline homopolymers. Owing to the high crystallization rate, the glass transition was observable only for the copolymers containing from 30 to 70 mol % of the terephthalate units; even though the samples cannot be frozen in a completely amorphous state, the data obtained confirmed that the introduction of the aromatic units gave rise to an increase of Tg, due to a chain stiffening. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2694–2702, 1999  相似文献   

15.
Fluorinated poly(butylene terephthalate) (PBT) can be easily prepared using a telechelic perfluoropolyether (PFPE) as a comonomer. The functional groups of the PFPE react completely with other monomers, but the distribution of the PFPE blocks is not homogeneous and in the final polymeric material there is a significant fraction of PFPE bonded to very short segments of polyester. Due to the very poor miscibility of PFPE and PBT, the PFPE is present as a separate phase dispersed in an almost pure PBT matrix. Accordingly, both thermal and mechanical properties of PBT are little affected by the PFPE. The presence of PFPE induces a slight improvement on the fracture resistance and on surface properties such as wear resistance and coefficient of friction. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
The morphology and crystallization behaviour of random block copolymers of poly(butylene terephthalate) and poly(tetramethylene ether glycol) have been investigated. Single crystals have been grown in thin films crystallized from the melt. Well defined lamellae, exhibiting (hkO) single crystal electron diffraction patterns have been observed in copolymers containing down to 49 wt% (0.83 mole fraction) poly(butylene terephthalate). WAXS and electron diffraction support a model of a relatively pure poly(butylene terephthalate) crystal core with the poly(tetramethylene ether glycol) (soft segment) sequences and short hard segments being rejected to the lamellar surface and the soft segment rich matrix. The lateral dimensions of the lamellae are determined by the number of hard segment sequences long enough to traverse the stable crystal size at the crystallization temperature. This leads to an initial population of crystals formed at Tc and a second set of smaller crystals that grow from the short hard segment sequences upon cooling to room temperature. The result is fractionation by sequence length due to a coupling of the sequence distribution with the stable crystal size at the crystallization temperature.  相似文献   

17.
Poly(ethylene terephthalate) (PET) and poly (butylene terephthalate) have been modified by diamide units (0.1–1 mol%) in an extrusion process and the crystallization behavior studied. The diamides used were: for PET, T2T‐dimethyl (N, N′‐bis(p‐carbomethoxybenzoyl)ethanediamine) and for PBT, T4T‐dimethyl (N, N′‐bis(p‐carbomethoxybenzoyl)butanediamine). The above materials were compared to talc (0.5 wt%), this being a standard heterogeneous nucleator, and to diamide modified copolymers obtained by a reactor process. Two PET materials were used: a slowly crystallizing recycled grade obtained from soft drink bottles and a rapidly crystallizing injection molding grade. The crystallization was studied by differential scanning calometry (DSC) and under injection molding conditions using wedge shaped specimens; the thermal properties were studied by dynamic mechanical analysis. T2T‐dimethyl is effective in increasing the crystallization of PET in both of the extrusion compounds as well as in the reactor materials. It was also found that the crystallization temperature of poly(butylene terephthalate) could be slightly increased by the addition of nucleators.  相似文献   

18.
19.
Poly(butylene terephthalate‐co‐triethylene terephthalate) random copolymers of various compositions and molecular weights were synthesized in bulk and characterized in terms of their chemical structure and thermal and rheological properties. At room temperature all the copolymers were partially crystalline and showed good thermal stability. The main effect of copolymerization was a decrease in the melting and glass‐transition temperatures with respect to the poly(butylene tere‐ phthalate) homopolymer. The fusion temperatures were well correlated with the composition by the Baur equation and the equilibrium melting temperature and the heat of fusion extrapolated values for poly(butylene terephthalate) were in good agreement with those reported elsewhere. Triethylene terephthalate units were found to influence the rheological behavior in the melt, the viscosity being significantly higher than that of the poly(butylene terephthalate‐co‐diethylene terephthalate) copolymers investigated previously. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 981–990, 2001  相似文献   

20.
Nanocomposites of poly(butylene terephthalate) (PBT) with the organoclay C12PPh‐MMT were prepared using in situ intercalation polymerization. Hybrids with various organoclay contents were processed for fiber spinning to examine their thermal behavior, tensile mechanical properties, and morphologies for various draw ratios (DRs). The thermal properties (Tg, Tm, and TDi) of the hybrid fibers were found to be better than those of pure PBT fibers and were unchanged by variation of the organoclay loading up to 2 wt %. However, these thermal properties remained unchanged for DRs ranging from 1 to 18. Most clay layers were dispersed homogeneously in the matrix polymer, although some clusters were also detected. The tensile properties of the hybrid fibers increased gradually with increasing C12PPh‐MMT content at DR = 1. However, the ultimate strengths and initial moduli of the hybrid fibers decreased markedly with increasing DR. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1247–1254, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号