首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The light extraction enhancement of freestanding GaN-based flip-chip light-emitting diodes(FSFCLEDs)using two-step roughening methods is investigated.The output power of LEDs fabricated by using one-step and two-step roughening methods are compared.The results indicate that two-step roughening methods show more potential for light extraction.Compared with flat FS-FCLEDs,the output power of FS-FCLEDs with a nanotextured hemisphere surface shows an enhancement of 90.7%.  相似文献   

2.
We have investigated Ag(200 nm)/AgAl(100 nm) ohmic contacts to p-type GaN for near-UV (405 nm) flip-chip light-emitting diodes (LEDs). It is shown that the use of an AgAl alloy capping layer (with 8 at% Al) results in better electrical and optical properties as compared to single Ag contacts when annealed at 430 °C. For example, Ag/AgAl (8 at% Al) contacts give specific contact resistance of 4.6×10–4 Ω cm2 and reflectance of 90% at a wavelength of 405 nm. However, use of an AgAl (with 50 at% Al) layer is not effective. LEDs fabricated with the Ag/AgAl (8 at% Al) reflectors produce higher light output as compared with the ones with single Ag reflectors. Ohmic mechanisms of the Ag/AgAl (8 at% Al) contacts are described and discussed.  相似文献   

3.
High-voltage light-emitting diodes (HV-LED) with backside reflector, including Ti305/SiO2 distributed Bragg reflector (DBR) or hybrid reflector combining DBR and Al or Ag metal layer, are investigated using Monte Carlo ray tracing method. The hybrid reflector leads to more enhancement of light-extraction efficiency (LEE). Moreover, the LEE can also be improved by redesigning the thicknesses of DBR. HV-LED with four redesigned DBR pairs (4-MDBR), and those with a hybrid reflector combining 4-MDBR and Al metal layer (4-MDBR-Al), are fabricated. Compared to 4-MDBR, the enhancement of light-output power induced by 4-MDBR-A1 is 4.6%, which is consistent with the simulated value of 4.9%.  相似文献   

4.
The influence of p-type Ga N(p Ga N) thickness on the light output power(LOP) and internal quantum efficiency(IQE) of light emitting diode(LED) was studied by experiments and simulations. The LOP of Ga N-based LED increases as the thickness of p Ga N layer decreases from 300 nm to 100 nm, and then decreases as the thickness decreases to 50 nm. The LOP of LED with 100-nm-thick pG a N increases by 30.9% compared with that of the conventional LED with 300-nm-thick p Ga N. The variation trend of IQE is similar to that of LOP as the decrease of Ga N thickness. The simulation results demonstrate that the higher light efficiency of LED with 100-nm-thick p Ga N is ascribed to the improvements of the carrier concentrations and recombination rates.  相似文献   

5.
Fabricating flip-chip light emitting diodes (FCLEDs) with two good thermal conductivity materials of silicon and aluminum nitride (AlN) as submount are investigated on its output power and heat sink capacity. It is known that many advantages exist in FCLED structures. In addition to the upward emitting light, the downward propagating light is reflected up by a high reflectance contact, increasing the light extraction. The heat generated in the LED flows directly through the interconnect metal of the submount, improving thermal conduction. Except blue shift at the low current injection region (0–0.3 A), the heat induced bang gap narrowing (red shift) at high current injection region (0.3–0.7 A) is observed with a red shift of 8.92 nm for conventional LED, 4.62 nm for silicon submount FCLED, and only 2.87 nm for AlN submount FCLED. The light intensity of FCLEDs with silicon and AlN submounts exhibits 1.6 and 7 times at an injection current of 0.35 and 0.7 A, respectively, larger than that of conventional LED.  相似文献   

6.
We propose a novel method to analyze the current-voltage (I-V) characteristics of GaN-based light-emitting diodes (LEDs) with different p-type electrodemesa geometries. The electrical efficiency is analyzed by calculating the electric field under the quasi-coplanar electrodes of GaN-based LEDs. The experimental results for GaN-based LEDs of chip sizes of 350×350 μm2 and 1,000 × 1,000 μm2 with interdigitated fingers are compared. A good agreement is obtained between the experimental and theoretical electrical efficiency of the GaN LEDs with a chip size of 1,000×1,000 μm2. The current-crowding effect is analyzed by measuring the electroluminescence spectra of the devices. The result indicates that the current-crowding effect is largely reduced by increasing the number of interdigitated fingers. The electrical efficiency of a LED with a chip size of 1,000×1,000 μm2 can be also enhanced by increasing the number of interdigitated fingers, showing the advantages of GaN LED with interdigitated-mesa geometries.  相似文献   

7.
We have investigated the annealing-induced improved electrical properties of In(10 nm)/ITO(200 nm) contacts with p-type GaN. The contacts become ohmic with a specific contact resistance of 2.75×10–3 Ω cm2 upon annealing at 650 °C in air. X-ray photoemission spectroscopy (XPS) Ga 2p core levels obtained from the interface regions before and after annealing indicate a large band-bending of p-GaN, resulting in an increase in the Schottky barrier height. STEM/energy dispersive X-ray (EDX) profiling results exhibit the formation of interfacial In-Ga-Sn-oxide. Based on the STEM and XPS results, the ohmic formation mechanisms are described and discussed. It is also shown that patterning by nano-imprint lithography improves the light output power of blue LEDs by 18–28% as compared to that of LEDs fabricated with unpatterned In/ITO contacts.  相似文献   

8.
The design and fabrication of a high-power light-emitting diode chip that has an active-region area of 1 mm2 and emits at a wavelength of 460 nm are described. The chip structure is developed on the basis of numerical simulation and is intended for flip-chip assembly. The use of two-level interconnections for an n-type contact made it possible to obtain an unprecedentedly low series resistance (0.65 Ω) and a high uniformity of pump-current distribution. Light-emitting diodes based on the developed design operate in the continuous-wave mode in a current range of 0–2 A, and their highest emission power is 430 mW.  相似文献   

9.
Design and fabrication of highly efficient GaN-based light-emitting diodes   总被引:1,自引:0,他引:1  
A promising fabrication method and an innovative geometrical design for highly efficient GaN-based light-emitting diodes (LEDs) were investigated based on the current spreading phenomenon. Based on theoretical considerations, it was possible to determine the critical transparent-electrode thickness, which resulted in significant improvements in the electrical and optical characteristics of LEDs. In addition, we were able to define conditions for an ideal geometrical design and the resulting product exhibited significant improvements in characteristics in spite of the fact that a transparent electrode, acting as a p-type current spreader, was not used. Considering the simple fabrication process and good device performance, the proposed fabrication methods, as well as the innovative geometrical design, have considerable promise for use in practical applications.  相似文献   

10.
In this work, we report the fabrication process of wavy top-emission organic light-emitting diodes (WOLEDs), which can sustain multiaxial tensile and compressive strains. The devices are fabricated using standard procedures, comprised of the conventional stacks of OLED materials and transfer printing process. Transferring these devices onto thermally prestrained elastomeric substrates and then releasing this strain configure the devices into random, two-dimensional (2D) wavy layouts. The performance of the WOLEDs is analyzed at ±1.5% (strain ratio = 1.16) and ±3% (strain ratio = 2.33) strain with respect to the prestrain value. The fabricated WOLEDs demonstrate good performance in the green light region within ±1.5% and show comparable results even at ±3% tensile and compression strains, which indicates that the fabricated devices can accommodate high strain ratios without inducing significant stresses in the devices. Finite element simulation demonstrates strong coherence with the experimental results and provides a valuable insight into the strain effects on each layer utilized for the device fabrication. Along with that, the neutral plane is generated around the upper region of emission and cathode layers in the devices. A slight blue shift observed by the electroluminescence analysis reveals that luminescence of various colors can be obtained by changing the dimensions of the wavy buckles. This research work can remarkably contribute to the fabrication of multicolored flexible, wearable indicators or curvilinear displays that require the ability not only to bend and stretch, but also to compress in multiple directions with a high strain ratio.  相似文献   

11.
黄华茂  胡金勇  王洪 《半导体学报》2014,35(8):084006-5
Three types of textured indium-tin-oxide (ITO) surface, including nano-texturing and hybrid micro/nano-texturing with micro-holes (concave-hybrid-pattem) or micro-pillars (convex-hybrid-pattern), were applied to GaN-based light-emitting diodes (LEDs). The nano-texturing was realized by maskless wet-etching, and the micro-texturing was achieved by standard photolithography and wet-etching. Compared to LED chips with flat ITO surface, those with nano-pattern, concave-hybrid-pattern, and convex-hybrid-pattern exhibit enhancement of 11.3%, 15.8%, and 17.9%, respectively, for the light-output powers at 20 mA. The electrical performance has no degradation. Moreover, the convex-hybrid-pattern show higher light-output efficiency under small injection current, while the concave-hybrid-pattern exhibit better light-output efficiency at large injection current. The light- extraction efficiency is simulated by use of two-dimensional finite difference time domain method, and the numer- ical results are consistent with the experiments.  相似文献   

12.
采用传输矩阵法对GaN基蓝光发光二极管分布布拉格反射器(DBR)反射光谱进行研究.计算发现正入射时S偏振(TE模)与P偏振(TM模)反射带是一致的; S偏振和P偏振反射带随着入射角的增大都向高频(短波)方向移动,且两者之间的差别也随之增大,DBR反射带蓝移快慢与入射介质相关;低折射率入射介质时DBR具有更宽角度响应.通过修改结构参数多次计算表明;入射角修正的方法能较快地找到提高全方向反射的结构.复合DBR以降低反射率或者成倍增加膜层厚度为代价实现大角度范围的反射,复合DBR比传统DBR有更好的光谱特性,这对提高发光二极管的出光效率有现实意义.  相似文献   

13.
The thermal management of high-power light-emitting-diode (LED) devices employing various die-attach materials is analyzed. Three types of die-attach materials are tested, including silver paste, Sn–3 wt.% Ag–0.5 wt.% Cu (SAC305) solder, and SAC305 solder added with a small amount of carbon nanotubes (CNTs). The analysis of thermal management is performed by comparing the temperatures of the LED chips in use and the total thermal resistances of the LED devices obtained respectively from the thermal infrared images and thermal transient analysis. Due to the high thermal conductivity of CNT, the addition of CNTs into the SAC305 solder reduces the total thermal resistance and chip temperature of the LED device, and the thermal management of the LED devices is improved accordingly.  相似文献   

14.
采用传输矩阵法对GaN基蓝光发光二极管分布布拉格反射器(DBR)反射光谱进行研究。计算发现正入射时S偏振(TE模)与P偏振(TM模)反射带是一致的;S偏振和P偏振反射带随着入射角的增大都向高频(短波)方向移动,且两者之间的差别也随之增大,DBR反射带蓝移快慢与入射介质相关;低折射率入射介质时DBR具有更宽角度响应。通过修改结构参数多次计算表明:入射角修正的方法能较快的找到提高全方向反射的结构。复合DBR以降低反射率或者成倍增加膜层厚度为代价实现大角度范围的反射。复合DBR比传统DBR有更好的光谱特性,这对提高发光二极管的出光效率有现实意义。  相似文献   

15.
The performances of top-emission organic light-emitting diodes (TEOLEDs) with various P-dopant (PD) contents in the injection layer were studied by thinning or removing an indium tin oxide (ITO) film sputtered on the anode. On adjusting the thickness of the active TBPDA (N4,N4,N4′,N4′-tetra ([1,1′-biphenyl]-4-yl)-[1,1′-biphenyl]-4,4′-diamine) film used as hole transport layer, the International Commission on Illumination (CIE) coordinates of blue TEOLEDs did not change and the same CIE coordinates (0.14, 0.04) were maintained. The blue index of device I (PD of 3%) without an indium tin oxide (ITO) layer was 139.9 cd/A/CIEy at a current density of 10 mA/cm2. This value was 28% higher than that of the device B (PD of 2%), which had a 15-nm thick ITO film, and 19% higher than that of device E (PD of 2%), which had a 7-nm thick ITO film. Devices B, E, and I achieved similar voltages of approximately 3.9 V. Thus, in the optimized TEOLEDs with suitable PD contents, efficiency was improved by silver without the use of ITO as an anode.  相似文献   

16.
Top-emission flexible organic light-emitting devices (TE-FOLEDs) are highly suitable for next generation display due to their numerous assets including top-emitting configuration and mechanical flexibility. One major challenge in TE-FOLEDs is to prepare a deformable and reflective bottom electrode capable of effective carrier injection. In this paper, a new strategy for efficient and foldable TE-FOLEDs is demonstrated. It is based on a highly conductive Ag-nanoparticles (Ag-NPs) modified graphite that is used as a flexible bottom electrode. The good reflectance to full-color emission (>59% over the whole visible wavelength range), ultralow sheet resistance (<5 Ω/sq), and high tolerance to mechanical bending (almost unchanged in resistance after bending 1000 times with an angle of ±90°) of the modified graphite synergistically constitute a breakthrough in the domain of TE-FOLEDs. The maximum current efficiencies reach 15.0, 50.2, 16.8 cd/A for red, green, blue emissions, respectively. Colorimetric gamut increased by 99.6% compared to bottom emission structure with the corresponding Commission Internationale de L'Eclairage (CIE) coordinates of the red/green/blue (R/G/B) devices. In particular, the TE-FOLEDs incorporating highly flexible graphite electrodes offer great mechanical durability and the initial brightness of 5000 cd/m can be maintained over 90% after bending for 1000 bending cycles. This approach is expected to open a new avenue for developing foldable displays.  相似文献   

17.
The selective wet etching of a p-GaN layer by using a solution of KOH in ethylene glycol (KE) was studied to enhance the optical and electrical performance of the GaN-based light-emitting diodes (LEDs). The surface of the p-GaN, which was selectively etched in the KE solution, showed hexagonal-shaped etch pits. The light-output power of etched LEDs was improved by 29.4% compared to that of the nonetched LED. This improvement was attributed to the increase in the probability of photons to escape due to the increased surface area of textured surface and the reduction in contact resistance of the ohmic layer resulting from the increased contact area and hole concentration on the textured p-GaN. The reverse leakage current of the LED was also greatly decreased due to the surface passivation and the removal of defective regions from the p-GaN.  相似文献   

18.
Light-emitting diodes with the high-radiance Burrus configuration have been made with an internal p-n-p-n structure which causes anS-type negative resistance. The devices were double heterostructures using InGaAsP material. By using the proper external load impedance and bias voltage, the negative resistance can be used to obtain bistable operation with switching from low current to high current triggered by a small current (e.g., 1 μA). Light coupled into the center junction can be used as the source of signal current. Since light output is proportional to the total current, this type of device can be used as a light-signal repeater.  相似文献   

19.
Because the polarization effect influences the distribution of the carriers in the multiple quantum wells of the light-emitting diodes (LEDs), the light-emitting efficiency is also affected. The influence of the polarization effect on GaN-based LEDs' performance is simulated. By simulating four different types of electrode shapes, it's found that the electrode shape influences not only the photoelectric characteristics but also the optical absorption by the semiconductor. Through the optimization of the electrode shape, the I-V characteristic is improved, and the series resistance is lowered. The optical absorption by the semiconductor is decreased and then the heat generated in the LEDs is lowered. As a result, both the photoelectric conversion efficiency and the stability are improved.  相似文献   

20.
GaN-based LEDs with photonic crystal (PhC) patterns on an n- and a p-GaN layer by nano-imprint lithography (NIL) are fabricated and investigated. At a driving current of 20 mA on Transistor Outline (TO)-can package, the light output power of the GaN-based LED with PhC patterns on an n- and a p-GaN layer is enhanced by a factor of 1.30, and the wall-plug efficiency is increased by 24%. In addition, the higher output power of the LED with PhC patterns on the n- and p-GaN layer is due to better crystal quality on n-GaN and higher scattering effect on p-GaN surface using PhC pattern structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号