首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current energy supply depends on fossil fuels which have increased carbon dioxide emissions leading to global warming and depleted non-renewable fossil fuels resources. Hydrogen (H2) fuel could be an eco-friendly alternative since H2 consumption only produces water. However, the overall impacts of the H2 economy depend on feedstock types, production technologies, and process routes. The existing process technologies for H2 production used fossil fuels encounter the escalation of fossil fuel prices and long-term sustainability challenges. Therefore, biohydrogen production from renewable resources like biomass wastes and wastewaters has become the focal development of a sustainable global energy supply. Different from other biohydrogen production studies, this paper emphasizes biohydrogen fermentation processes using different renewable sources and microorganisms. Moreover, it gives an overview of the latest advancing research in different biohydrogen process designs, modeling, and optimization. It also presents the biohydrogen production routes and kinetic modeling for biohydrogenation.  相似文献   

2.
The purpose of this study is to assess the political, economic and environmental impacts of producing hydrogen from biomass. Hydrogen is a promising renewable fuel for transportation and domestic applications. Hydrogen is a secondary form of energy that has to be manufactured like electricity. The promise of hydrogen as an energy carrier that can provide pollution-free, carbon-free power and fuels for buildings, industry, and transport makes it a potentially critical player in our energy future. Currently, most hydrogen is derived from non-renewable resources by steam reforming in which fossil fuels, primarily natural gas, but could in principle be generated from renewable resources such as biomass by gasification. Hydrogen production from fossil fuels is not renewable and produces at least the same amount of CO2 as the direct combustion of the fossil fuel. The production of hydrogen from biomass has several advantages compared to that of fossil fuels. The major problem in utilization of hydrogen gas as a fuel is its unavailability in nature and the need for inexpensive production methods. Hydrogen production using steam reforming methane is the most economical method among the current commercial processes. These processes use non-renewable energy sources to produce hydrogen and are not sustainable. It is believed that in the future biomass can become an important sustainable source of hydrogen. Several studies have shown that the cost of producing hydrogen from biomass is strongly dependent on the cost of the feedstock. Biomass, in particular, could be a low-cost option for some countries. Therefore, a cost-effective energy-production process could be achieved in which agricultural wastes and various other biomasses are recycled to produce hydrogen economically. Policy interest in moving towards a hydrogen-based economy is rising, largely because converting hydrogen into useable energy can be more efficient than fossil fuels and has the virtue of only producing water as the by-product of the process. Achieving large-scale changes to develop a sustained hydrogen economy requires a large amount of planning and cooperation at national and international alike levels.  相似文献   

3.
Biomass has been widely recognized as a clean and renewable energy source, with increasing potential to replace conventional fossil fuels in the energy market. The abundance of biomass ranks it as the third energy resource after oil and coal. The reduction of imported forms of energy, and the conservation of the limited supply of fossil fuels, depends upon the utilization of all other available fuel energy sources. Energy conversion systems based on the use of biomass are of particular interest to scientists because of their potential to reduce global CO2 emissions. With these considerations, gasification methods come to the forefront of biomass-to-energy conversions for a number of reasons. Primarily, gasification is more advantageous because of the conversion of biomass into a combustible gas, making it a more efficient process than other thermochemical processes. Biomass gasification has been studied widely as an efficient and sustainable technology for the generation of heat, production of hydrogen and ethanol, and power generation. Renewable energy can have a significant positive impact for developing countries. In rural areas, particularly in remote locations, transmission and distribution of energy generated from fossil fuels can be difficult and expensive, a challenge that renewable energy can attempt to correct by facilitating economic and social development in communities. This paper aims to take stock of the latest technologies for gasification.  相似文献   

4.
Towards a sustainable energy supply is a clear direction for exploratory research in Shell. Examples of energy carriers, which should be delivered to the envisaged sustainable energy markets, are bio-fuels, produced from biomass residues, and hydrogen (or electricity), produced from renewable sources. In contrast to the readily available ancient sunlight stored in fossil fuels, the harvesting of incident sunlight will be intermittent, efficient electricity and hydrogen storage technologies need to be developed. Research to develop those energy chains is going on, but the actual transformation from current fossil fuel based to sustainable energy markets will take a considerable time. In the meantime the fossil fuel based energy markets have to be transformed to mitigate the impact of the use of fossil fuels. Some elements in this transformation are fuels for ultra-clean combustion (hydrocarbons and oxygenates), hydrogen from fossil fuels, fuels for processors for fuel cells, carbon sequestration.  相似文献   

5.
In this paper, hydrogen is considered as a renewable and sustainable solution for reducing global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions are derived depending primarily upon the exergetic utilization ratios of fossil fuels and hydrogen: the fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency, fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator. These relations incorporate predicted exergetic utilization ratios for hydrogen energy from non-fossil fuel resources such as water, etc., and are used to investigate whether or not exergetic utilization of hydrogen can significantly reduce the fossil fuel based global irreversibility coefficient (ranging from 1 to +∞) indicating the fossil fuel consumption and contribute to increase the hydrogen based global exergetic indicator (ranging from 0 to 1) indicating the hydrogen utilization at a certain ratio of fossil fuel utilization. In order to verify all these exergetic expressions, the actual fossil fuel consumption and production data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. For the verification of these parameters, the variations of fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator as the functions of fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency and exergetic utilization of hydrogen from non-fossil fuels are analyzed and discussed in detail. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases, the fossil fuel based global irreversibility coefficient will decrease and the hydrogen based global exergetic indicator will increase.  相似文献   

6.
In this study we analyze and compare the climate impacts from the recovery, transport and combustion of forest residues (harvest slash and stumps), versus the climate impacts that would have occurred if the residues were left in the forest and fossil fuels used instead. We use cumulative radiative forcing (CRF) as an indicator of climate impacts, and we explicitly consider the temporal dynamics of atmospheric carbon dioxide and biomass decomposition. Over a 240-year period, we find that CRF is significantly reduced when forest residues are used instead of fossil fuels. The type of fossil fuel replaced is important, with coal replacement giving the greatest CRF reduction. Replacing oil and fossil gas also gives long-term CRF reduction, although CRF is positive during the first 10-25 years when these fuels are replaced. Biomass productivity is also important, with more productive forests giving greater CRF reduction per hectare. The decay rate for biomass left in the forest is found to be less significant. Fossil energy inputs for biomass recovery and transport have very little impact on CRF.  相似文献   

7.
The world's energy system is at least a 1.5 trillion dollars market dominated by fossil fuels, where small changes can have a large influence on efforts to reach sustainability. Renewable energy sources are key to achieving this goal. Excluding traditional biomass, in 2001 renewables represented 4.4% of primary energy consumption, unevenly distributed between developed and developing countries. Environmental problems at local, regional and global levels, as well as external dependency and security of supply will persist if we rely on an energy future based on fossil fuels. Solutions encompass extending the life of fossil fuel reserves and expanding the share of renewable in the world energy system through top down and bottom up policies, described in this paper.  相似文献   

8.
朱成章 《中外能源》2013,(10):20-26
我国能源结构从长期看仍将以煤为主,缺油少气。从我国能源结构来讲,生物质利用的最好方式不是发电.因生物质可以生产液体和气体燃料,而风能、太阳能、水能却只能发电。我国秸杆综合利用取得明显成效.在农业和畜牧业的利用领域还可能进一步拓宽,作为燃料利用的量还可能进一步缩减。从我国还在进行的第一次能源大转换来看,我国生物质使用量已大大减少,但还有相当的数量。要减少作为能源使用的生物质传统利用量,把它用于饲料、肥料和工业原料等还有发展前景的用途。在一次能源消费以化石能源为主的时期,中国存在液体燃料和气体燃料短缺的问题,以后进入第三次能源转换时期,新能源和可再生能源替代化石能源之后,液体燃料和气体燃料短缺的问题将会更加突出。因此,生物质应用于生产液体燃料和气体燃料,而不是用于发电。而且生物质发电厂投资高、燃料成本不断上涨,使发电成本高+生物质发电将长期缺乏竞争力。我国发展生物质液体燃料已具备一定的条件.前几年中石油、中石化和中海油已开始种植可提炼生物液体燃料的能源林。我国非粮生物质液体燃料生产基地正在积极建设之中。我国发展生物质气体燃料也具有一定优势,在沼气、气化和城镇有机废物处理方面都积累了一定的经验。总之生物质生产液体燃料和气体燃料是一种既适应我国当前、又适应未来能源需求的有效措施。  相似文献   

9.
As the global demand for energy rapidly increases and fossil fuels will be soon exhausted, bio‐energy has become one of the key options for shorter and medium term substitution for fossil fuels and the mitigation of greenhouse gas emissions. Biomass currently supplies 14% of the world's energy needs. Biomass pyrolysis has a long history and substantial future potential—driven by increased interest in renewable energy. This article presents the state‐of‐the‐art of biomass pyrolysis systems, which have been—or are expected to be—commercialized. Performance levels, technological status, market penetration of new technologies and the costs of modern forms of biomass energy are discussed. Advanced methods have been developed in the last two decades for the direct thermal conversion of biomass to liquid fuels, charcoals and various chemicals in higher yields than those obtained by traditional pyrolysis processes. The most important reactor configurations are fluidized beds, rotating cones, vacuum and ablative pyrolysis reactors. Fluidized beds and rotating cones are easier for scaling and possibly more cost effective. Slow pyrolysis is being used for the production of charcoal, which can also be gasified to obtain hydrogen‐rich gas. The short residence time pyrolysis of biomass (flash pyrolysis), at moderate temperatures, is being used to obtain a high yield of liquid products (up to 70% wt), particularly interesting as energetic vectors. Bio‐oil can substitute for fuel oil—or diesel fuel—in many static applications including boilers, furnaces, engines and turbines for electricity generation. While commercial biocrudes can easily substitute for heavy fuel oils, it is necessary to improve the quality in order to consider biocrudes as a replacement for light fuel oils. For transportation fuels, high severity chemical/catalytic processes are needed. An attractive future transportation fuel can be hydrogen, produced by steam reforming of the whole oil, or its carbohydrate‐derived fraction. Pyrolysis gas—containing significant amount of carbon dioxide, along with methane—might be used as a fuel for industrial combustion. Presently, heat applications are most economically competitive, followed by combined heat and power applications; electric applications are generally not competitive. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The global energy crisis and continual soaring prices of fossil fuels force people to seek the new and recycled alternative energy sources hard. Biodiesel oil as well as bioethanol fuel, as two new and clean fuels for environmental protection, have already been approved as substitutes for fuel or fuel additive. Some common bottlenecks for production of biodiesel crops have been found. However, developing bioethanol crops in Taiwan has many benefits. Four most promising alcohol crops in Taiwan, i.e., sweet potato, maize, sugarcane, and sweet sorghum have been discussed. Sweet sorghum can be strongly recommended as a key alcohol crop in Taiwan, because of its short growing period, low water requirement, large amount of biomass and alcohol produced, and greater income obtained from sweet sorghum cultivation.  相似文献   

11.
生物质能除了可以在改善世界一次能源结构、降低化石能源需求量方面做出重要贡献以外,还可在减少温室气体排放、保障能源供应安全、改善贸易平衡、促进农村发展和改进城市废弃物处理方式等方面发挥作用。目前全球每年一次能源消费总量为500EJ,生物质资源的年用量约占一次能源消费总量的10%左右,主要被用于传统的民用燃料和生产第一代生物燃料。第二代生物燃料技术预计将于2020年前后在一些国家实现工业化生产。IEA预测,2050年世界一次能源需求量为670EJ,生物质资源将占一次能源需求总量的20%左右。各方学者预测的2050年全球生物质资源量最低值基本在200~400EJ之间,最高值在400~1500EJ之间。中国的生物燃料产业尚处于起步阶段,不过应该说取得了良好的开端。我国生物质资源相对较少,且分布不均,发展生物质能产品需要依靠能源作物。只有通过合理开发、有效利用,才能在不与粮食和食用油争夺土地的前提下,在一定程度上提供生物运输燃料和生物质发电供热所需的原料,生物质能-农产品和/或生物质能-林产品联合生产系统应成为主要发展方向。美国生物燃料产业的发展模式对我国具有一定的借鉴意义。生物质最有效的利用方式是生产运输燃料,从长远来看,生物燃料可以与石油燃料竞争,尤其是喷气燃料和汽油更具替代优势,但受到生物质资源供应量的制约。  相似文献   

12.
Hydrocarbon fossil fuels can be considered as hydrogen ores for CO2-free energy, and carbon ores for carbonaceous construction materials. Hydrogen fuel can be extracted from fossil fuels by decarbonization, and used as an energy resource. The carbon byproduct can be used as a versatile construction material. Carbon materials would sequester carbon, and replace CO2-generating steel and concrete. Approximate comparison of the global consumption of energy and construction materials suggests a rough mass balance of energy and materials markets. The cost of foregoing the carbon energy content as a fuel can be easily offset by the value of the carbon-based construction material. The nature and properties of carbon materials and conventional infrastructural materials are compared.  相似文献   

13.
The present work considers the impact of hydrogen fuel on the environment within the cycles of its generation and combustion. Hydrogen has been portrayed by the media as a fuel that is environmentally clean because its combustion results in the formation of harmless water. However, hydrogen first must be generated. The effect of hydrogen generation on the environment depends on the production process and the related by-products. Hydrogen available on the market at present is mainly generated by using steam reforming of natural gas, which is a fossil fuel. Its by-product is CO2, which is a greenhouse gas and its emission results in global warming and climate change. Therefore, hydrogen generated from fossil fuels is contributing to global warming to the similar extent as direct combustion of the fossil fuels. On the other hand hydrogen obtained from renewable energy, such solar energy, is environmentally clean during the cycles of its generation and combustion. Consequently, the introduction of hydrogen economy must be accompanied by the development of hydrogen that is environmentally friendly. The present work considers several aspects related to the generation and utilisation of hydrogen obtained by steam reforming and solar energy conversion (solar-hydrogen).  相似文献   

14.
The iron and steel industry is the second largest user of energy in the world industrial sector and is currently highly dependent on fossil fuels and electricity. Substituting fossil fuels with renewable energy in the iron and steel industry would make an important contribution to the efforts to reduce emissions of CO2. However, different approaches to assessing CO2 emissions from biomass and electricity use generate different results when evaluating how fuel substitution would affect global CO2 emissions. This study analyses the effects on global CO2 emissions when substituting liquefied petroleum gas with synthetic natural gas, produced through gasification of wood fuel, as a fuel in reheating furnaces at a scrap-based steel plant. The study shows that the choice of system perspective has a large impact on the results. When wood fuel is considered available for all potential users, a fuel switch would result in reduced global CO2 emissions. However, applying a perspective where wood fuel is seen as a limited resource and alternative use of wood fuel is considered, a fuel switch could in some cases result in increased global CO2 emissions. As an example, in one of the scenarios studied, a fuel switch would reduce global CO2 emissions by 52 ktonnes/year if wood fuel is considered available for all potential users, while seeing wood fuel as a limited resource implies, in the same scenario, increased CO2 emissions by 70 ktonnes/year. The choice of method for assessing electricity use also affects the results.  相似文献   

15.
Hydrogen has been using as one of the green fuel along with conventional fossil fuels which has enormous prospect. A new dimension of hydrogen energy technology can reduce the dependency on non-renewable energy sources due to the rapid depletion of fossil fuels. Hydrogen production via Biomass (Municipal solid waste, Agricultural waste and forest residue) gasification is one of the promising and economic technologies. The study highlights the hydrogen production potential from biomass through gasification technology and review the parameters effect of hydrogen production such as temperature, pressure, biomass and agent ratio, equivalence ratios, bed material, gasifying agents and catalysts effect. The study also covers the all associated steps of hydrogen separation and purification, WGS reaction, cleaning and drying, membrane separation and pressure swing adsorption (PSA). To meet the huge and rising energy demand, many countries made a multidimensional power development plan by adding different renewable, nuclear and fossil fuel sources. A large amount of biomass (total biomass production in Bangladesh is 47.71 million ton coal equivalent where 37.16, 3.49 and 7.04 MTCE are agricultural, MSW and forest residue based biomass respectively by 2016) is produced from daily uses by a big number of populations in a country. It also includes total feature of biomass gasification plant in Bangladesh.  相似文献   

16.
The demand for energy is increasing every year. For a long time, fossil fuels have been used to satiate this energy demand. However, using hydrocarbon-based fossil fuels has led to an enormous rise of carbon dioxide levels in the atmosphere resulting in global warming. It is therefore necessary to look for alternatives to fossil fuels. The research carried out till date have shown biomass and waste-derived fuels as plausible alternatives to fossil fuels. The biomass feedstock includes jatropha oil, Karanja oil, cottonseed oil, and hemp oil among others and wastes include used cooking oil, used engine oil, used tire and used plastics etc. In this study, the authors aim to explore waste lubrication oil as a fuel for the diesel engine. The used lubrication oil was pyrolyzed and diesel-like fuel with 80% conversion efficiency was obtained. A blend of the fuel and diesel in the ratio of 80:20 on volume basis was prepared. Engine experiments at various load conditions was carried out with the blend. As compared to diesel, a 2% increase in thermal efficiency, 6.3%, 16.1% and 13.6% decrease in smoke, CO and HC emissions & 3.2% and 1.8% increase in NOx and CO2 emission were observed at full load with the blend. With an aim to further improve the engine performance and reduce the overall emissions from the engine exhaust, a zero-carbon fuel namely gaseous hydrogen was inducted in the intake manifold. The flow rate of hydrogen was varied from 3 to 12 Litres per minute (LPM). As compared to diesel, at maximum hydrogen flow rate the thermal efficiency increased by 12.2%. HC, CO and smoke emissions decreased by 42.4%, 51.6% and 16.8%, whereas NOx emissions increased by 22%. The study shows that the combination of pyrolyzed waste lubricant and hydrogen were found to be suitable as a fuel for an unmodified diesel engine. Such fuel combination can be used for stationary applications such as power backups.  相似文献   

17.
Prospects of biodiesel production from microalgae in India   总被引:3,自引:0,他引:3  
Energy is essential and vital for development, and the global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment. Renewable and carbon neutral biodiesel are necessary for environmental and economic sustainability. Biodiesel demand is constantly increasing as the reservoir of fossil fuel are depleting. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Production of biodiesel using microalgae biomass appears to be a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. Microalgae are photosynthetic microorganisms which convert sunlight, water and CO2 to sugars, from which macromolecules, such as lipids and triacylglycerols (TAGs) can be obtained. These TAGs are the promising and sustainable feedstock for biodiesel production. Microalgal biorefinery approach can be used to reduce the cost of making microalgal biodiesel. Microalgal-based carbon sequestration technologies cover the cost of carbon capture and sequestration. The present paper is an attempt to review the potential of microalgal biodiesel in comparison to the agricultural crops and its prospects in India.  相似文献   

18.
The increasing energy demands along with the expected depletion of fossil fuels have promoted to search for alternative fuels that can be obtained from renewable energy resources. Biodiesel as a renewable energy resource has drawn the attention of many researchers and scientists because its immense potential to be part of a sustainable energy mix in near future.This report attempts to compile the findings on current global and Malaysian energy scenario, potential of biodiesel as a renewable energy source, biodiesel policies and standards, practicability of Jatropha curcas as a biodiesel source in Malaysia as well as impact of biodiesel from Jatropha curcas. Final part of this report also describes the development of biodiesel market in Malaysia.The paper found that Jatropha curcas is one of the cheapest biodiesel feedstock and it possesses the amicable fuel properties with higher oil contents compared to others. Being non edible oil seed feedstocks it will not affect food price and spur the food versus fuel dispute. Jatropha can be substituted significantly for oil imports. Jatropha biodiesel has potential to reduce GHG emission than diesel fuel and it can be used in diesel engine with similar performance of diesel fuel. Jatropha curcas has an immense contribution to develop rural livelihoods too. Finally biodiesel production from Jatropha is eco-friendly and offers many social and economical benefits for Malaysia and can play an increasingly significant role to fulfill the energy demand in Malaysia.  相似文献   

19.
Concerns regarding the potential global environmental impacts of fossil fuels used in power generation and other energy supplies are increasing worldwide. One of the methods of mitigating these environmental impacts is increasing the fraction of renewable and sustainable energy in the national energy usage. A number of techniques and methods have been proposed for reducing gaseous emissions of NOx,SO2 and CO2 from fossil fuel combustion and for reducing costs associated with these mitigation techniques. Some of the control methods are expensive and therefore increase production costs. Among the less expensive alternatives, cofiring has gained popularity with the electric utility producers. This paper discusses the ‘gaseous emission characteristics namely NOx,SO2, suspended particulate matter and other characteristics like specific fuel consumption, total fuel required, actual and equivalent evaporation, total cost of fuel, etc. from a 18.68 MW power plant with a travelling grate boiler, when biomass was cofired with bituminous coal in three proportions of 20%, 40% and 60% by mass. Bagasse, wood chips (Julia flora), sugarcane trash and coconut shell are the biomass fuels cofired with coal in this study.  相似文献   

20.
Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled “Economic Development through Biomass Systems Integration”, with the objective of investigate the feasibility of integrated biomass energy systems, utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full fuel cycle for four of these case studies, which have been examined with regard to the emissions of carbon dioxide, CO2. Although the conversion of biomass to electricity in itself does not emit more CO2 than is captured by the biomass through photosynthesis, there will be some CO2 emissions from the DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO2 and other greenhouse gases are emitted. However, by utilizing biomass with fossil fuels as external input fuels, we would get about 10–15 times more electric energy per unit fossil fuel, compared with a 100% coal power system. By introducing a DFSS on former farmland the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved and a significant amount of energy will be produced compared with an ordinary farm crop. Compared with traditional coal-based electricity production, the CO2 emissions are in most cases reduced significantly by as much as 95%. The important conclusion is the great potential for reducing greenhouse gas emissions through the offset of coal by biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号