首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To achieve a national energy access target of 90% urban and 51% rural by 2035, combat climate change, and diversify the energy sector in the country, the Zambian government is planning to integrate other renewable energy resources (RESs) such as wind, solar, biomass, and geothermal into the existing hydro generation–based power system. However, to achieve such targets, it is essential for the government to identify suitable combination of the RESs (electricity generation fuel mix) that can provide the greatest sustainability benefit to the country. In this paper, a multicriteria decision-making framework based on analytic hierarchy process and system dynamics techniques is proposed to evaluate and identify the best electricity generation fuel mix for Zambia. The renewable energy generation technologies considered include wind, solar photovoltaic, biomass, and hydropower. The criteria used are categorized as technical, economic, environmental, social, and political. The proposed approach was applied to rank the electricity generation fuel mix based on nine sustainability aspects: land use, CO2 emissions, job creation, policy promotion affordability, subsidy cost, air pollution reduction, RES electricity production, RES cumulative capacity, and RES initial capital cost. The results indicate that based on availability of RESs and sustainability aspects, in overall, the best future electricity generation mix option for Zambia is scenario with higher hydropower (40%) penetration, wind (30%), solar (20%), and lower biomass (10%) penetration in the overall electricity generation fuel mix, which is mainly due to environmental issues and availability of primary energy resources. The results further indicate that solar ranks first in most of the scenarios even after the penetration weights of RES are adjusted in the sensitivity analysis. The wind was ranked second in most of the scenarios followed by hydropower and last was biomass. These developed electricity generation fuel mix pathways would enable the country meeting the future electricity generation needs target at minimized environmental and social impacts by 2035. Therefore, this study is essential to assist in policy and decision making including planning at strategic level for sustainable energy diversification.  相似文献   

2.
Capacity choice and water management in hydroelectricity systems   总被引:1,自引:0,他引:1  
This paper proposes a simple two-period model that captures the seasonal pattern of water inflows and electricity demand observed in many countries where hydropower is a major source of electricity supply. The model characterizes the effects of different inflows pattern on the optimal water management, capacity, and the associated electricity production and price. The first best capacity is a non-monotonic function of water inflows, which provides a rationale for the observed differences in reservoirs sizes across hydropower systems around the world. The monopoly solution is qualitatively similar to the first best outcome, and the privatization of hydroelectric power generation systems does not always imply a social welfare loss.  相似文献   

3.
Hydropower is recognized as a renewable and clean energy sources and its potential should be realized in an environmentally sustainable and socially equitable manner. Traditionally, the decision criteria when analyzing hydropower projects, have been mostly a technical and economical analysis which focused on the production of electricity. However, environmental awareness and sensitivity to locally affected people should also be considered. Multi-criteria decision analysis has been applied to study the potential to develop hydropower projects with electric power greater than 100 kW in the Ping River Basin, Thailand, and to determine the advantages and disadvantages of the projects in five main criteria: electricity generation, engineering and economics, socio-economics, environment, and stakeholder involvement. There are 64 potential sites in the study area. Criteria weights have been discussed and assigned by expert groups for each main criteria and subcriteria. As a consequence of weight assignment, the environmental aspect is the most important aspect in the view of the experts. Two scenarios using expert weight and fair weight have been studied to determine the priority for development of each project. This study has been done to assist policy making for hydropower development in the Ping River Basin.  相似文献   

4.
Brazil has to expand its power generation capacities due to significant projected growth of demand. The government aims at adding hydropower capacities in North–Brazil, additional to wind and thermal power generation. However, new hydropower may affect environmentally and socially sensitive areas in the Amazon region negatively while thermal power generation produces greenhouse gas emissions. We therefore assess how future greenhouse gas emissions from electricity production in Brazil can be minimized by optimizing the daily dispatch of photovoltaic (PV), wind, thermal, and hydropower plants. Using a simulation model, we additionally assess the risk of loss of load. Results indicate that at doubled demand in comparison to 2013, only 2% of power production has to be provided by thermal power. Existing reservoirs of hydropower are sufficient to balance variations in renewable electricity supply at an optimal mix of around 37% of PV, 9% of wind, and 50% of hydropower generation. In a hydro-thermal only scenario, the risk of deficit increases tenfold, and thermal power production four-fold. A sensitivity analysis shows that the choice of meteorological data sets used for simulating renewable production affects the choice of locations for PV and wind power plants, but does not significantly change the mix of technologies.  相似文献   

5.
Kelly Cowan  Tugrul Daim  Tim Anderson 《Energy》2010,35(12):4771-4779
A wide range of literature streams and methods were examined for this research, including sustainability, integrated resource planning, and construction of portfolios of electricity generation technologies. The research then focused on current and emerging HPSTs (hydropower generation and storage technologies), and technical, economic, social, and environmental sustainability objectives associated with those technologies in the PNW (Pacific Northwest) region of the United States. Candidate technologies obtained from the literature were examined using the Delphi Method, and then rated according to their perceived impacts using the AHP (Analytical Hierarchy Process). GP (Goal Programming) was then used to determine an optimal mix of technologies to achieve sustainability objectives, using these weightings and assumptions related to specific scenarios regarding technology development, adoption, and availability. This research is important because few previous studies have systematically considered multiple objectives and criteria from multiple stakeholder experts for creating portfolios of sustainable electricity generation technologies. Previous research has also not comprehensively investigated the manner in which changing scenarios of technology development and availability rates may lead to various technological, economic, environmental, and social sustainability impacts with regard to planning of regional electrical generation and storage systems.  相似文献   

6.
Ahmad Houri   《Renewable Energy》2006,31(11):1686-1697
In a region characterized by low water resources, Lebanon stands as an exceptional country in the Middle East. Several waterways present ample opportunity for utilization of hydropower. Before the civil war, several projects were undertaken to generate electricity through hydropower. A total installed capacity of 283 MW has aided Lebanon in supplementing its need of electricity from local renewable sources, thus reducing the overall bill of imported energy. The available hydropower generation constitutes currently 4–7% of the electricity generation depending on rainfall, with future plans expected to install another 205 MW of capacity. This use is in competition with water diversion for irrigation. Four different scenarios were analyzed to indicate the share of hydropower in the total production of electricity, with and without future irrigation and power projects, indicating that, by 2020, hydropower's share of electricity generation will vary between a maximum of 6.9% and a minimum of 1.2% depending on government plans regarding water use. Current value of potential energy available when water from the Litani river is used for hydropower is estimated to be around 20 cents per m3. Water uses planned should take this value into account.  相似文献   

7.
Before commissioning any energy projects, conducting robust assessments of different options in terms of their economic and socio-environmental impacts is important for successful project implementation. Yet, there is currently a lack of tools that simultaneously assess sustainability impacts; instead, they are often investigated separately, which gives decision makers somehow disintegrated information. Thus the main objective of this study is to examine how to incorporate socio-environmental considerations into project assessment models. The multi-criteria analysis is applied to the case study of Sri Lankan hydropower projects as an illustrative example. The estimated quantitative relationship between economic, environmental and social impacts of hydropower development is presented in this study. Such estimation, using sustainability indicators of hydropower projects, enables us to understand marginal trade-offs among economic, environmental and social objectives of hydropower development. Hence, this would provide an overview of potential impacts of different scenarios that are designed to be implemented and indicate an optimum mix of hydropower generation.  相似文献   

8.
This paper studies the potentials of green hydrogen production from hydropower energy and its application in electricity regeneration and replacement of petroleum products from the transportation sector in Nepal. The potential surplus hydroelectric energy, and hydrogen production potential from the surplus energy considering different scenarios, is forecasted for the study period (2022–2030). The results showed that hydrogen production potential ranges from 63,072 tons to 3,153,360 tons with the utilization of surplus energy at 20% and 100% respectively, in 2030. The economic analysis of hydrogen from hydropower projects that electricity is valued based on per kg of hydrogen when the surplus electricity is provided at feasible lower price values compared to the US $1.17. This study concludes that hydrogen production from spilled hydro energy and its use in the transportation sector and independent electricity generation is a niche opportunity to lead the country towards sustainable energy solutions and an economy running on hydrogen.  相似文献   

9.
Although small hydropower projects generally contribute a small proportion of most nations' electricity needs their importance often exceeds their size. John Osborne, a freelance industrial journalist considers prospects for small hydro, how such schemes are benefiting communities throughout the world and why some countries are more successfully using small hydro than others.  相似文献   

10.
Historically, the rural population of Nepal has been meeting their energy needs from traditional sources like fuel wood and other biomass resources. Only about 44% of the total population has access to grid electricity. Because of country’s rough and mountainous topography, high cost of grid extension, and low and scattered population density, constructing some big power plants (e.g. large hydropower) can not meet the electricity needs of all people, especially those living in rural areas. Distributed generation of electricity, using environment friendly solar photovoltaic (PV) systems, might be one of the reliable alternatives for urban as well as rural electrification. This article begins with a general overview of energy resources in Nepal. Present status and perspectives of solar PV sector have also been discussed. Benefit cost and breakeven analyses of solar PV systems in Nepalese urban areas have been carried out. The breakeven year has been calculated between 2027 and 2036 for PV systems with system life time between 40 and 25 years, respectively. It has been concluded that the solar PV systems are not the economic solutions for grid connected urban areas in Nepal. On the other hand, this article concludes that the rural electrification projects should not be decided on the basis of mere monetary benefits, rather many social aspects should be considered, and in this case, there are not convincing alternatives to solar PV systems for electrification in many rural villages in Nepal.  相似文献   

11.
Benjamin K. Sovacool   《Energy Policy》2009,37(11):4500-4513
If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection.  相似文献   

12.
The conversion of wood to synthetic natural gas (SNG) via gasification and catalytic methanation is a renewable close to commercialization technology that could substitute fossil fuels and alleviate global warming. In order to assure that it is beneficial from the environmental perspective, a cradle to grave life cycle assessment (LCA) of SNG from a first-of-its-kind polygeneration unit for heating, electricity generation, and transportation was conducted. These SNG systems were compared to fossil and conventional wood reference systems and environmental benefits from their substitution evaluated. Finally, we conduct sensitivity analysis for expected technological improvements and factors that could decrease environmental performance.It is shown that substituting fossil technologies with SNG systems is environmentally beneficial with regard to global warming and for selected technologies also with regard to aggregated environmental impacts. On the condition that process heat is used efficiently, technological improvements such as increased efficiency and denitrification could further increase this advantage. On the other hand, lower GHG emissions and aggregated impacts are partly compensated by other environmental effects, e.g. eutrophication, ecotoxicity, and respiratory disease caused by inorganics. Since more efficient alternatives exist for the generation of heat and electricity from wood, it is argued that SNG is best used for transportation. In the light of a growing demand for renewable transportation fuels and commercial scale technological development being only in its initial stage, the production of SNG from wood seems to be a promising technology for the near future.  相似文献   

13.
The use of energy crops for electricity is set to undergo significant expansion on a global basis. As with any form of energy production, some impact on the environment is inevitable and it is important for the successful development of this technology that full account is taken of the environmental impacts of new projects.This paper focuses on some of the environmental issues that need to be addressed in arable coppice power generation.  相似文献   

14.
The increasing demand for energy, especially from renewable and sustainable sources, spurs the development of small hydropower plants and encourages investment in new survey studies. Preliminary hydropower survey studies usually carry huge uncertainties about the technical, economic and environmental feasibility of the undeveloped potential. This paper presents a methodology for large-scale survey of hydropower potential sites to be applied in the inception phase of hydroelectric development planning. The sequence of procedures to identify hydropower sites is based on remote sensing and regional streamflow data and was automated within a GIS-based computational program: Hydrospot. The program allows spotting more potential sites along the drainage network than it would be possible in a traditional survey study, providing different types of dam-powerhouse layouts and two types (operating modes) of projects: run-of-the-river and storage projects. Preliminary results from its applications in a hydropower-developed basin in Brazil have shown Hydrospot’s limitations and potentialities in giving support to the mid-to-long-term planning of the electricity sector.  相似文献   

15.
This paper presents comparative yet extensive analysis of existing non-conventional renewable resources, energy policies and gaps in BRICS countries. An intelligent transformation to green economy to maintain natural resources is noted. Brazil has stable energy policies and is the leading producer of biofuels following hydropower until 2014 but supported wind and solar power development by tendering specific tariffs for energy generation from solar and wind. Russia needs improvement in its legal and regulatory framework with more incentives in energy policies. China is improving upon wind and hydropower but it needs strong policy measures to put cap on increased CO2 emissions. India needs revision in energy policy and requires extra incentives and consumer specific energy policies for research-infrastructure and energy generation technologies. South Africa requires lessons to increase renewable energy and reduce coal mining. Moreover, BRICS countries need to redefine their energy policies based upon their existing geographical, economical, societal and environmental conditions which will help in shaping global energy policies and more financial stability. This paper recognizes the potential of BRICS to reshape the global system paralleled with minimizing CO2 emissions. The concerted role of BRICS needs to be recognized as the leading contributor of global renewable capacity where the developed world is geared and busy to address the environmental issues.  相似文献   

16.
The recent development of efficient thermal prime movers for distributed generation is changing the focus of the production of electricity from large centralized power plants to local generation units scattered over the territory. The scientific community is addressing the analysis and planning of distributed energy resources with widespread approaches, taking into account technical, environmental, economic and social issues. The coupling of cogeneration systems to absorption/electric chillers or heat pumps, as well as the interactions with renewable sources, allow for setting up multi-generation systems for combined local production of different energy vectors such as electricity, heat (at different enthalpy levels), cooling power, hydrogen, various chemical substances, and so forth. Adoption of composite multi-generation systems may lead to significant benefits in terms of higher energy efficiency, reduced CO2 emissions, and enhanced economy. In this light, a key direction for improving the characteristics of the local energy production concerns the integration of the concepts of distributed energy resources and combined production of different energy vectors into a comprehensive distributed multi-generation (DMG) framework that entails various approaches to energy planning currently available in the literature. This paper outlines the main aspects of the DMG framework, illustrating its characteristics and summarizing the relevant DMG structures. The presentation is backed by an extended review of the most recent journal publications and reports.  相似文献   

17.
《Energy Policy》2005,33(7):927-937
The electricity generation in Switzerland is mostly based on hydropower (∼58%) and nuclear power (∼38%). The exploitation of water in the hydropower sector can generate significant economic rent. One possibility to capture this rent is through royalties or fees. This system has been used in Switzerland since many decades. However, the actual water fee system is not flexible and does not take into consideration different production costs between the type and location of hydropower plants. Furthermore, storage plants can sell electricity to a higher price than run-of-river plants. A flexible system is needed in a liberalized electricity market, to take into account these different production situations and the fact that prices may vary considerably over time. The main goal of this paper is to calculate the potential economic rent that could be generated in the Swiss hydropower sector under a future liberalized market. Based on the results of the paper, it can be concluded that the introduction of a flexible fee system could improve the competitiveness of the hydropower sector and promote an energy system based on renewable energy sources.  相似文献   

18.
《Energy》2001,26(6):619-632
This paper uses neuro-fuzzy programming to perform a comparison between the different electricity power generation options for Jordan. Different systems are considered: in addition to fossil fuel power plants, nuclear, solar, wind, and hydropower systems are evaluated. Based on cost-to-benefit ratios, results show that solar, wind, and hydropower are considered to be the best systems for electricity power generation. On the other hand, nuclear electricity turns out to be the worst choice, followed by fossil fuel electric power.  相似文献   

19.
Renewable energy systems (RESs) have been promoted for rural electrification as an answer to the growing energy needs of communities while simultaneously satisfying environmental and resource scarcity problems. These off-grid systems however have several challenges in the perspective of sustainability due to the technically and financially weak recipients and users of the projects. There is still, however, less detailed understanding how the technical and economic aspects of the projects can properly match the social aspects to promote sustainability. This paper aimed to further understand the challenges and social impacts of rural electrification projects using RES through a case study of a centralized off-grid solar plant in the Philippines. The study used multiple correspondence analysis (MCA) to identify essential user attributes which explain the users’ electricity consumption behaviors. The community cooperative had difficulties maintaining the facility in the long term due to financial and capacity related challenges. A holistic approach dealing with the technical, economic and social aspects in developing RES projects promote sustainability.  相似文献   

20.
Energy and development are closely intertwined. Yet, increasing fossil fuel-based energy consumption contributes significantly to environmental problems both locally and globally. This article explores the interlinkages between local livelihood and environmental benefits from the provision of energy to remote rural households through small hydropower development. The analysis is based on research carried out around a large development project designed to assist the Government of India in the optimum utilization of small hydropower resources in the Himalayan and sub-Himalayan regions. There are about 100,000 villages in India that are not connected to electricity supply, many of them in the hilly regions with ample hydropower potential. The project aimed to demonstrate the utility of and options for providing electricity to such villages through clean mini-hydro. The article addresses the nature of the impacts of the demonstration small hydel schemes on the local communities, to what extent they translate into environmental benefits both locally and globally, and the perceptions and participation of the local communities in these small hydro schemes. The study explores the impacts of the schemes on financial capital, natural capital, social capital, physical capital, human capital, and gender equity in the local communities. It further provides a discussion on the links between local and global environmental benefits. Overall, it is found that the schemes’ impacts both on the local communities and the environment are mostly marginally positive or neutral, although achieving clearly demonstrable benefits would require major upscaling of the effort involving broader changes than possible under this project. Furthermore, it is argued that some of the assumptions behind the project design were faulty. Involvement of the local communities and direct livelihood benefits to them are essential for the long-term sustainability of the small hydro schemes. The discussion and conclusions are intended to provide guidance to programmes and projects that aim to promote environmentally sound energy in the rural areas of developing countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号