首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Flat premixed burner-stabilized H2 + O2 + N2 flames, neat or doped with 300–1000 ppm of NO or NH3, were studied experimentally using molecular-beam mass-spectrometry and simulated numerically. Spatial profiles of temperature and concentrations of stable species, H2, O2, H2O, NO, NH3, and of H and OH radicals obtained at atmospheric pressure in lean (? = 0.47), near-stoichiometric (? = 1.1) and rich (? = 2.0) flames are reported. Good agreement between measured and calculated structure of lean and near-stoichiometric flames was found. Significant discrepancy between simulated and measured profiles of NO concentration was observed in the rich flames. Sensitivity and reaction path analyses revealed reactions responsible for the discrepancy. Modification to the model was proposed to improve an overall agreement with the experiment.  相似文献   

2.
3.
The influences of the performance parameters and the heat transfer characteristics of the absorption heat pump using ammonia–water mixture are theoretically carried out. There is a pronounced effect of the ammonia concentration ξ after rectifier on the temperature glides that has been investigated. At ξ = 0.9000 and saturation pressures of 75 and 0.5 bar, the temperature glides are 64.4°C and 81.21°C, respectively, whereas these glides are 0°C and 16.1°C at ξ = 0.9999 and at the same pressures. This mixture property considerably affects the absorption system performance and the design of the rectifier as well as other absorption components. A correlation of the Nusselt number, Nu, is developed and compared with some published work in the literature for plate type heat exchanger. The effects of ammonia concentration ξ, mass fraction spread Δξ, specific solution circulation ratio f, and pressure ratio Rp on the refrigerant mass flow rate, the pressure drop, and the heat transfer coefficients during the condensation, the evaporation, and the absorption processes are investigated. It was found that increasing ammonia mass fraction spread Δξ results in both specific circulation ratio f and Rp that have insignificant effects on the refrigerant mass flow rate. Mounting Δξ at constant f reduces the pressure drop gradually and subsequently starts to increase as Δξ escalates. The ammonia concentration ξ has insignificant effect on the evaporation heat transfer coefficient but has a little effect on the condensation and the absorber heat transfer coefficients. The ammonia mass fraction spread Δξ and f have considerable effects on the heat transfer coefficient for different absorption heat pump components. Rp has a pronounced effect on the evaporation heat transfer coefficient, although it has a slight effect on the condensation and the absorber heat transfer coefficients. The effect of Rp on the heat transfer coefficient may be eliminated in the absorber for Δξ > 0.18. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
An analysis of the coefficient of performance (COP), specific cooling power (Qscp) and exergy losses for a four-bed adsorption heat pump is presented. A composite adsorbent (SWS-1L) and water are the adsorption pair. An optimum cycle time, corresponding to a maximum specific cooling power, was found. This maximum specific cooling power increases almost linearly with the regeneration temperature. For the operation corresponding to the maximum specific cooling power at the regeneration temperature of 120 °C, using the SWS-1L composite adsorbent to substitute a regular-density silica gel in the adsorbers, the COP and Qscp values can be increased by 51% and 38.4%, respectively. At the regeneration temperature of 100 °C and the mode operating time of 360 s, the second-law efficiency of the adsorption heat pump is 20.4%. The cycle exergy loss mainly occurs in the adsorbers. The exergy losses in the condenser and evaporator are small. Among the four processes in the adsorbers, the precooling and preheating processes result in 41.55% and 28.96% of the cycle exergy loss, respectively, while the adsorption and regeneration processes cause 8.44% and 18.97%, respectively. The exergy losses in the precooling and preheating processes mainly result from heat transfer through a significant temperature difference.  相似文献   

5.
A water to water heat pump specially designed and instrumented for research has been used to determine the actual coefficients of performance of R11 for condensing temperatures in the range 70°C to 104°C. 101 experimental points were obtained and these lie on a smooth curve with a standard deviation of 6.32 per cent. The results are compared with data previously obtained for R12, R22, R12B1 and R114 on the same equipment. R11 with its relatively high critical temperature of 198°C is potentially an attractive working fluid provided that it can be operated in conjunction with a lubricant which does not facilitate thermal breakdown.  相似文献   

6.
《Applied Energy》1986,25(3):187-204
Heat pump assisted distillation with an external working fluid is one of the most obvious methods to reduce the energy consumption in a distillation process. The heat pump working fluid extracts heat from the top of the column, increases the temperature of the recovered heat and recycles it to provide the heat input to the reboiler.The interaction between the external parameters and the internal parameters for a specially designed heat pump assisted distillation system has been studied experimentally. The external parameters were mass flow rate, temperature and concentration of the feed, the concentration of the top and bottom products and the mass flow rate of the working fluid. The effects of the variations of these external parameters on the internal parameters such as the energy (steam) consumption, the actual coefficient of performance and the temperatures at the top and bottom of the column, together with the condensation and evaporation temperatures, are presented.  相似文献   

7.
The use of reversible chemical reactions in recuperation of heat has gained significant interest due to higher magnitude of reaction heat compared to that of the latent or sensible heat. To implement chemical reactions for upgrading heat, a chemical heat pump (CHP) may be used. A CHP uses a reversible chemical reaction where the forward and the reverse reactions take place at two different temperatures, thus allowing heat to be upgraded or degraded depending on the mode of operation. In this work, an exergetic efficiency model for a CHP operating in the temperature‐level amplification mode has been developed. The first law and the exergetic efficiencies are compared for two working pairs, namely, CaO/CO2 and CaO/H2O for high‐temperature high‐lift CHPs. The exergetic efficiency increases for both working pairs with increase in task, TH, decrease in heat source, TM, and increase in condenser, TL, temperatures. It is also observed that the difference in reaction enthalpies and specific heats of the involving reactants affects the extent of increase or decrease in the exergetic efficiency of the CHP operating for temperature‐level amplification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes the performance of an ammonia–water combine ejector–absorption cycle as refrigerator and heat pump. This combination brings together the advantages of absorption and ejector systems. Also, thermodynamic cycles on the temperature–enthalpy and temperature–entropy charts are shown. The thermodynamics of the combined ejector–absorption cycles are simulated by a suitable method and a corresponding computer code, based on analytic functions describing the behaviour of the binary mixture NH3–H2O. It is found that in the case of the refrigerator and heat pump, the theoretical coefficient of performance (COP) or the theoretical heat gain factor (HGF) vary from 1.6 to 90.4 per cent and 0.7 to 37.6 per cent, greater than those of the conventional absorption system, respectively. The operation conditions were: generator temperature (205.5 to 237.1°C), condenser temperature (25.9 to 37.4°C) and evaporator temperature (−8.4 to 5°C). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
《Applied Energy》2005,82(2):107-116
Trifluoroethanol(TFE)–tetraethylenglycol dimethylether (TEGDME or E181) is a new organic working-pair which is non-corrosive, completely miscible and thermally stable up to 250 °C. It is suitable for upgrading low-temperature level industrial waste-heat to a higher temperature level for reuse. In this paper, the thermodynamic performance of the double-effect absorption heat-transformer (DEAHT) using TFE/E181 as the working fluid is simulated, based on the thermodynamic properties of TFE/E181 solution. The results show that, when the temperature in the high-pressure generator exceeds 100 °C and the gross temperature lift is 30 °C, the coefficient of performance (COP) of the DEAHT is about 0.58, which is larger than the 0.48 of the single-stage absorption heat-transformer (SAHT), the increase of COP is about 20%. But it is still less than 0.64 of the DEAHT using LiBr–H2O as the working fluid. Meanwhile, the COP of the DEAHT decreases more rapidly with increases of the absorption temperature than that for the SAHT. The range of available gross temperature-lift for the DEAHT is narrower than that of the SAHT. The higher the temperature in the high-pressure generator, the larger the gross temperature-lift could be. So the double-effect absorption heat-transformer is more suitable for being applied in those circumstances of having a higher-temperature heat-resource and when a higher temperature-lift is not needed.  相似文献   

10.
高琳琳  高红岩  张丽  段炼  田兴旺 《节能》2010,29(5):73-75
提出以LiBr-H2O为工质对的太阳能吸收式热泵海参干燥系统,介绍此系统的组成及工作流程。LiBr-H2O太阳能吸收式热泵应用于干燥过程可以降低能耗,绿色环保。对其应用前景进行分析,同时提出该系统在推广应用方面的限制因素,对太阳能吸收式热泵海参干燥装置设计及推广具有参考价值。  相似文献   

11.
First-principle density functional theory calculations were used to investigate the electronic structure and mechanism of the LiH + NH3 → LiNH2 + H2 reaction. Along the reaction pathway, intermediate complexes HLi…NH3 and LiNH2…H2 and a transition state can be found. The N-2p electron in the highest occupied molecular orbital (HOMO) of NH3 transfers to the Li-2s orbital in lowest unoccupied molecular orbital (LUMO) of LiH and forms the initial state HLi…NH3. In the transition state, H1 of LiH and H2 of NH3 turn toward each other, resulting in the formation of a H2 bond. From the transition state to the final state, the geometric configuration changes from Cs to C2v, and the improvement of geometric configuration symmetry results in a decrease in the energy gap between HOMO and LUMO. The LiH + NH3 → LiNH2 + H2 reaction is exothermic.  相似文献   

12.
不同工质条件下污水源冷热水机组的性能分析   总被引:1,自引:1,他引:0  
付红春  袁正明 《节能》2009,28(3):37-39
介绍污水源冷热水机组的工作原理及污水的特性,推导出了污水源冷热水机组在制冷和热泵工况下的各个设备的(火用)损失、整个机组的(火用)效率以及一次能源利用率的计算公式。分析比较不同工质条件下机组在夏季制冷和冬季制热工况时,整个机组的(火用)效率、机组COP值、一次能源利用率等,得出R407C是污水源热泵理想工质的结论。  相似文献   

13.
In the present study, blends R744/R600 and R744/R600a are being proposed as working fluids in heat pumps for medium and high temperature heating applications. COP based performances have been evaluated for zeotropic mixtures of both working fluid pairs for various compositions and compared against that of pure working fluids. Effect of internal heat exchanger on blend based system performance is also presented and finally heat transfer issues in evaporation and condensation are discussed. Results show that due to gliding temperature during evaporation and condensation, the zeotropic blends, instead of pure counterparts, can be employed very effectively in heat pumps for variable temperature or simultaneous cooling and heating applications (e.g., dairy plants) at conventional high side pressure. The blend R744/R600a can be the best alternative refrigerant to R114 for high temperature heating due to superior COP (more than twice) over R600 and R600a and eliminating the requirement of extremely high side pressure of R744 systems.  相似文献   

14.
Exergy is based on the second law of thermodynamics and is the only rational basis for evaluating the system performance. The aim of this paper is to study in detail the irreversibilities in the steam‐ejector refrigeration system. The influence of the cycle parameters is analysed on the basis of the first and second law and the results indicated the components with the greater irreversibility. A better quality of the ejector has more effect on the system performance than the better quality of other components, because the ejector at first and the condenser at second have the greater exergy loss of the system. For the refrigeration system the maximum coefficient of performance varying between 0.4 to 0.6 and the second law efficiency remains close to 0.17 for generator pressure 6 bar, condenser temperature 44–50°C and evaporator temperature 4–8°C. Also the study showed that the second law analysis quantitatively visualizes losses within a system and gives clear trends for optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
An experimental study has been carried out on a continuously operated pilot fractional distillation column equipped with an external heat pump. The distillation column was a 15 cm internal diameter glass unit containing eleven single bubble cap plates. A methanol-water mixture was fed to the column. After operating the heat pumps with R114 as the working fluid, further experiments have been conducted with R11 as the working fluid. Plots of pressure against enthalpy, condensation pressure and latent heat of vaporization against condensation temperature and theoretical Rankine coefficient of performance against gross temperature lift and condensation temperature are presented for both R114 and R11. R11 has correspondingly higher theoretical Rankine coefficients of performance than R114. The experiments show that the actual coefficients are also higher for R11 than for R114. A maximum actual coefficient of performance of 5.3 was obtained using R11 as the working fluid with a gross temperature lift of 38.4°C. The experimental data for R11 were found to be reproducible during operation over a number of weeks. This showed that the relative thermal instability of R11 compared to R114 had not apparently affected the performance of the system.  相似文献   

16.
混合工质可为振荡热管带来独特的传热性能.比较甲醇、乙醇纯工质以及甲醇-乙醇混合工质振荡热管在不同充液率时的热阻随加热功率的变化情况,结果发现:在小充液率(45%)时甲醇-乙醇混合工质和乙醇振荡热管开始烧干时的加热功率高于甲醇工质振荡热管;在加热功率不是很大(低于65W)和大充液率(62%~90%)时,甲醇以及甲醇-乙醇混合工质振荡热管的传热性能优于乙醇振荡热管;在大加热功率(高于65W)和大充液率(62%~90%)时甲醇以及甲醇-乙醇混合工质振荡热管的热阻十分接近,均低于乙醇工质振荡热管的热阻,且热阻随着充液率的增加曲线变化越来越平缓.  相似文献   

17.
Energetic and exergetic performance analyses of flat-plate solar collector using supercritical CO2 have been done in this study. To take care of the sharp change in thermophysical properties in near critical region, the discretisation technique has been used. Effects of zonal ambient temperature and solar radiation, fluid mass flow rate and collector geometry on heat transfer rate, collector efficiency, heat removal factor, irreversibility and second law efficiency are presented. The optimum operating pressure correlation has been established to yield maximum heat transfer coefficient of CO2 for a certain operating temperature. Effect of metrological condition on heat transfer rate and collector efficiency is significant and that on heat removal factor is negligible. Improvement of heat transfer rate is more predominant than increase in irreversibility by using CO2. For the studied ranges, the maximum performance improvement of flat-plate solar collector by using CO2 as the heat transfer fluid was evaluated as 18%.  相似文献   

18.
In this research, Latent Heat Thermal Energy Storage Systems (LHTESS) containing Nano-Enhanced Phase Change Material (NEPCM) in the presence of novel shape finned heat pipe is numerically investigated from the viewpoint of discharging process. In recent years, LHTESS have been used to establish a balance between energy supply and demand. Since conventional PCMs are characterized with high latent heat and low thermal conductivity, these systems are capable of storing large amount of energy, but storage and retrieval processes cannot be achieved in the desired time duration. In this paper, CFD simulation and multi-objective Response Surface Method (RSM) optimization is used simultaneously to find the optimum configuration of novel shaped fin, which is then attached to a heat pipe and immersed into the LHTESS. The performance of finned heat pipe assisted LHTESS is compared to the LHTESS containing NEPCM, and LHTESS with other common fin structures. Since the immersion of finned heat pipe into the system decreases the amount of employed PCM, the maximum energy storage capacity of the LHTESS drops subsequently. Thus, energy storage capacity, as one of the objectives of optimization procedure of this research is studied quantitatively, which is proposed as the novelty here. Results indicate that employing maximum energy storage capacity as an evaluation parameter, leads to efficient design of LHTESS. Also it is inferred that immersing finned heat pipe into LHTESS as a heat transfer enhancement technique is superior to nanoparticles dispersion.  相似文献   

19.
在相同的工况条件下,对二氧化碳(R744)/二甲醚(RE170)混合工质与四种常见的热泵工质R22、R134a、R410A和R407C的亚临界循环性能进行了分析计算。结果发现,在R744/RE170质量配比为30/70下,系统的制热循环性能系数最大,其值为4.922,分别比R22、R134a、R410A和R407C系统提高了17.53%、30.52%、19.09%和16.52%;此时,系统的冷凝压力为2.276MPa仅高于R134a系统,压缩机压比为3.708,压缩机出口工质排气温度为92.6℃。  相似文献   

20.
In this paper, a performance and cost assessment of Integrated Solar Combined Cycle Systems (ISCCSs) based on parabolic troughs using CO2 as heat transfer fluid is reported on. The use of CO2 instead of the more conventional thermal oil as heat transfer fluid allows an increase in the temperature of the heat transfer fluid and thus in solar energy conversion efficiency. In particular, the ISCCS plant considered here was developed on the basis of a triple-pressure, reheated combined cycle power plant rated about 250 MW. Two different solutions for the solar steam generator are considered and compared.The results of the performance assessment show that the solar energy conversion efficiency ranges from 23% to 25% for a CO2 maximum temperature of 550 °C. For a CO2 temperature of 450 °C, solar efficiency decreases by about 1.5–2.0% points. The use of a solar steam generator including only the evaporation section instead of the preheating, evaporation and superheating sections allows the achievement of slightly better conversion efficiencies. However, the adoption of this solution leads to a maximum value of the solar share of around 10% on the ISCCS power output. The solar conversion efficiencies of the ISCCS systems considered here are slightly greater than those of the more conventional Concentrating Solar Power (CSP) systems based on steam cycles (20–23%) and are very similar to the predicted conversion efficiencies of the more advanced direct steam generation solar plants (22–27%).The results of a preliminary cost analysis show that due to the installation of the solar field, the electrical energy production cost for ISCCS power plants increases in comparison to the natural gas combined cycle (NGCC). In particular, the specific cost of electrical energy produced from solar energy is much greater (about two-fold) than that of electrical energy produced from natural gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号