共查询到16条相似文献,搜索用时 146 毫秒
1.
低压配电网台区位于输配电系统的末端,是开展配电系统管控的基础环节。受不可抗力的影响,台区终端采集数据普遍存在缺失值,整体数据质量较差,进而影响信息的正确性和决策分析的准确度。传统的数据修复方法忽略了台区数据的周期性和时序性,修复精度较低。该文提出一种基于生成对抗网络(generativeadversarialnetwork,GAN)的配电网台区缺失采集数据修复模型,改进了GAN网络的结构,为判别器额外设计了提示机制,使其能够尽可能地利用未缺失信息,潜在地拟合原始数据的分布特征。所提出的方法不需要利用完整的数据集进行训练,整体运行在无监督的环境下,更适用于复杂的生产实际,实验结果表明,所提方法能够高精度地对台区缺失数据进行修复。 相似文献
2.
针对破损区域面积大的图像,在现有的图像修复方法中,往往会产生与周围区域不一致的扭曲结构或模糊的纹理。随着深度学习的发展和应用,基于生成对抗网络的方法,通过调节可用数据来生成缺失的内容。对于一个数据集,先将数据集中的样本解析成概率分布中的样本点,利用生成对抗网络快速生成出大量伪造图像,通过搜索最接近的已损坏图像的编码,然后这个编码通过生成模型来推断缺失内容。在此基础上,结合了语义损失函数和感知损失函数,并通过改进激活函数Sigmoid函数扩大了不饱和区域,解决了梯度易消失的问题。通过实验表明,方法成功的预测了图像中大面积缺失区域的信息,并实现了照片的真实感,比先前的方法产生更清晰更连贯的结果。 相似文献
3.
传统的数据缺失重构技术大多依赖数理统计方法和先验知识结合机理分析构建数学模型,但是配电网量测数据具有高维、时变、非线性特征,复杂度高、表征难度大,难以保证高精度重构。文中提出一种利用无监督生成对抗训练方式自主提取数据特征并结合双重语义感知重构约束实现数据缺失重构的方法。其中,基于二维卷积的重构模型和量测数据二维灰度图像化训练增强了模型泛化能力和稳定性。该方法无需先验知识的分布假设与显式物理建模,在保证数据特征提取最大化的同时,有效提高了重构数据的精确性。最后,利用实测数据验证了该方法在重构缺失数据上的有效性。 相似文献
4.
针对采用生成对抗网络进行油井生产参数数据生成时,部分生成数据不符合油井生产过程特性,导致动液面软测量建模质量不高的问题,提出一种基于专家诊断的生成对抗网络油井动液面软测量建模数据扩充方法。 在判别器基于真实数据与生成数据得到原始损失值后,结合油井生产的机理过程对生成数据的合理性进行专家诊断,检测判别器判别结果。 对错误结果进行补偿并加入生成器与判别器的损失函数中进行后续对抗训练,从而生成较优的符合油井生产过程特性的动液面软测量建模样本数据。 通过仿真实验,生成数据补充到软测量建模的训练数据中能够提高动液面的预测精度,均方根误差降低了5. 99%。 表明加入专家诊断模块后生成器生成数据质量更高,能够更好地满足油田生产需求。 相似文献
5.
可再生能源发电具有较强的随机性和波动性,为实现高效可靠的场景建模,提出一种基于改进条件生成对抗网络的可控场景生成方法。提出基于条件生成对抗网络的场景生成框架,结合Transformer的全局注意力机制以及常规卷积和深度可分离卷积的局部泛化机制,设计适用于提取可再生能源发电不同维度特征的网络结构;利用条件生成对抗网络模型建立低维气象特征隐空间和高维可再生能源发电数据之间的映射关系,提出一种可控场景生成方法,并建立随机场景生成、场景约减、极端场景生成和连续日场景生成4种生成策略。基于实际光伏、风电数据和气象数据的仿真结果表明,所提模型与方法能够有效学习可再生能源发电的随机性、时序性、波动性及空间相关性,实现对不同策略下场景的可控生成。 相似文献
6.
7.
针对建立无人起重装卸目标检测深度学习标注数据耗时问题,设计了货物图像检测生成对抗网络,构成准确的含语义标注和关键点标注的数据集,该数据集可用于有监督深度学习语义分割模型的训练。通过融合StyleGAN与DatasetGAN的生成对抗网络,对实际应用中存在的语义特征变形问题进行改进,将生成器的样本归一化层进行修改,去除均值操作,修改噪声模块和样式控制因子的输入方式;对纹理特征单一的物体的空间位置编码能力弱的问题,将生成网络的常数输入替换为傅里叶特征,并提出一个融合非线性上下采样的模块;最后引入WGAN-GP对目标函数进行改进。应用实验生成标签数据集,使用Deeplab-V3作为评价网络,以DatasetGAN方法作为基线,在语义标签生成任务上,Deeplab-V3输出mIOU值提高14.83%,在关键点标签生成任务上,L2损失平均降低0.4×10^(-4),PCK值平均提高5.06%,验证了改进的生成对抗网络生成语义及关键点标注数据的可行性和先进性。 相似文献
8.
针对现有算法在修复大面积破损区域的壁画图像时容易出现特征提取困难,上下文结构不一致等问题,提出一种基于双判别生成对抗网络的壁画图像虚拟修复。首先,将U-Net架构引入生成网络,结合扩张卷积与跳跃连接实现多尺度特征融合提取,利用重构损失初步构建修复模型。其次利用双重判别网络,保证图像全局一致性的同时,加强修复后的局部细节。最后交替训练生成网络和双重判别网络,加权重构损失和WGAN-GP损失,进一步优化网络模型,完成破损壁画图像的虚拟修复。根据创建的壁画数据集,进行训练测试,并与多组修复算法进行修复对比,结合主客观评价指标进行评价,结果表明,该算法修复的壁画图像质量更优,较好的完成了较大区域受损壁画图像的整体一致性修复。 相似文献
9.
电力设备的在线监测系统常出现不同程度的数据缺失,而传统的缺失数据填补模型精度较低。因此提出一种基于自注意力生成对抗网络(self-attention generative adversarial networks,SA-GAN)的电力设备在线监测缺失数据填补模型。首先搭建基于自注意力机制的时间序列填补模型,并对权重融合模块进行改进,然后将时间序列填补模型作为生成器,构造对应的判别器与损失函数,提出了具有自注意力机制的生成对抗网络SA-GAN,对电力设备在线监测数据进行缺失填补。最后通过实际工程中的电力变压器、高压电缆在线监测数据对模型进行训练与测试,验证了模型的有效性。结果表明,通过局部遮掩对110 kV变压器在线监测数据进行自然缺失模拟并通过各类缺失填补模型进行补全时,SA-GAN模型的平均绝对误差(mean absolute error,MAE)最高为0.11,均方根误差(root mean square error,RMSE)最高为0.17,较其他模型分别至少降低19.10%、14.07%,验证了SA-GAN模型的有效性;对9.51%自然缺失率下的220 kV高压电缆在线监测数据... 相似文献
10.
在信号生成算法中,需要大量标记信号样本用于网络训练,但通常携带电文信息标记的信号难以批量获取。针对此问题本文提出一种基于循环生成对抗网络和迁移学习的方法,实现了无需大量信号及对应电文作为标记的增强罗兰信号生成,并使用迁移学习在少量实测信号情况下快速生成。循环生成对抗网络的结构包括两个生成器和两个判别器,利用无需一一对应的增强罗兰信号和电文数据集,使生成器学习到两个数据集之间的相互转换关系,实现输入电文数据可以生成与之相对应的增强罗兰信号,并且针对增强罗兰信号的特性,使用一维卷积、残差网络、自注意力机制对网络模型进行改进。实验证实,生成信号与实测数据的均方误差为0.015 3,平均皮尔逊相关系数为0.984 3,且所含电文信息准确率为99.02%。本文在PSK、ASK、FSK数据集上验证了算法,实验结果表明生成的信号满足预期,为未知参数的信号调制和解调提供一种新的思路。 相似文献
11.
为了实现红外和可见光图像信息的良好平衡,本文利用生成对抗网络技术,提出了一种深层次多分类的生成对抗网络红外与可见光图像融合方法。该方法将主辅思想引入到生成器的梯度和强度信息提取中,并提高了生成器卷积层的深度及浅层网络信息提取能力。在鉴别器中使用多分类器同时估计可见光和红外区域的分布。经过连续的对峙学习,使融合结果中具有显著的对比度和丰富的纹理细节信息。实验获得的信息熵及香农熵值为6.86、互信息值为13.72、标准差值为34.82、结构相似性值为0.71。对比实验结果表明,在主客观评价中,本文提出的方法获得更好的红外与可见光图像融合性能。 相似文献
12.
光学相干断层扫描(OCT)图像中存在的散斑噪声会掩盖视网膜重要的形态学细节,妨碍视网膜病变的观察和临床诊断。提出了一种基于结构相似约束生成对抗网络的视网膜OCT图像去噪算法,基于残差策略改进生成对抗网络模型结构,并融合结构相似性损失约束模型优化,实现散斑噪声抑制,同时增强对视网膜结构细节的保留。在杜克大学发布的SD-OCT公开数据集上的实验表明,所提算法的峰值信噪比和边缘保持指数分别为28.08和0.960,优于所对比的其他去噪方法,且适用于其他来自A2A SD-OCT研究的公开数据集。 相似文献
13.
城市电网新型电力系统中多元资源增多,数据采集难度加大,导致数据随机缺失率升高,难以满足精细化分析决策需求。为了解决新型电力系统中配网量测数据在采集与传输过程中频发的缺失问题,本文提出了一种基于波动互相关分析算法(FCCA)和改进型生成对抗网络(GAN)的电网缺失数据填补方法。首先,融合FCCA提出强相关性电网数据多维特征提取方法;其次,基于核主成分分析(KPCA)对多维特征数据集进行降维处理;最后设计改进型GAN结构,融合电网数据多维特征对低维向量进行重构,实现缺失数据填补。算例采用真实电网数据进行算法验证,并在某城市电网试运行,结果表明所提方法比传统数据填补方法具有更高填补精度。所以,在新型电力系统中量测数据连续缺失和缺失量较大的情况下,融合强相关性特征进行数据填补,对提升量测数据的完整性和可用性有明显优势。 相似文献
14.
油色谱数据的缺乏和不均衡会导致训练过拟合、模型缺乏代表性、测试集效果不理想等问题,从而难以对变压器的状态进行准确评价。针对该问题,将强化学习中的策略梯度算法引入生成式对抗网络GAN(Generative Adversarial Networks),提出了一种基于策略梯度和GAN的变压器油色谱案例生成方法。仿真结果表明,与传统的样本扩充算法相比,利用所提方法合成的样本质量较高。对包含9种故障状态共700组样本的变压器油色谱数据利用所提方法进行油色谱故障样本扩充,利用基于BP神经网络模型的变压器故障分类模型对将扩充后样本作为训练集训练得到的神经网络模型和仅用真实数据作为训练集训练得到的神经网络模型进行了对比,结果表明利用扩充的样本后,变压器故障分类准确率得到了提高。变压器故障诊断实例表明利用所提方法得到的结果与实际情况相符。 相似文献
15.
针对人脸图像复原任务中对图像尺度信息利用不足和眼镜结构复原错误的问题,提出一种基于双阶段多尺度生成对 抗网络复原模型。该模型第1阶段引入改进损失的U-Net 粗重构网络,利用跳连接减少原始图像信息的丢失,融合3种不同 的损失函数提高生成器的重构能力,采用双判别器考虑全局信息和局部信息,并提出一种混合域注意力机制用于关注图像的 空间和通道信息。第2阶段的精修复网络构建了全新的特征增强模块,增强网络对细节信息的提取能力和对结构的表达能 力,引入相对判别器,用于关注生成样本与真实样本之间的相对真实性,提高了生成质量和训练稳定性。实验结果表明,该方 法能够复原各类图像缺失的情况,并能够有效复原佩戴眼镜的人脸图像,与其他方法相比,该方法的峰值信噪比、结构相似性 和感知相似度评估等指标分别提升了3.81%、2.65%和0.45%。 相似文献
16.
为了避免全球定位系统欺骗攻击(GSA)对相量测量装置造成的危害,提出了一种基于改进自注意力机制生成对抗网络(SAGAN)的智能电网GSA防御方法.首先,通过引入深度学习参数,构建了改进网络-物理模型,利用历史数据计算得到当前时刻的量测值.然后,在SAGAN的生成器和判别器网络中分别融入一个时间注意力模块,提出了一种用于实现网络-物理模型的改进SAGAN防御方法.通过训练改进SAGAN,得到一对判别器和生成器,利用判别器检测采集的量测值是否遭受GSA,当检测到攻击时,利用生成器生成的数据替换欺骗数据,从而实现智能电网对GSA的主动防御.最后,基于IEEE 14节点和IEEE 118节点系统进行仿真测试,结果验证了所提方法的可行性和有效性. 相似文献