首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
《节能》2017,(7)
建立了包含汤姆逊效应的热电发电机驱动热电制冷机(TEG-TEC)装置热力学模型,运用非平衡热力学理论和数值计算方法进行了性能分析,对比考虑和不考虑汤姆逊效应2种情况,分析了汤姆逊效应对装置性能的影响。结果表明,汤姆逊效应使TEG-TEC装置性能降低,且降低幅度随热电发电机高温热源温度或制冷空间温度升高而减小。当热电发电机热节点温度和热电制冷机冷节点温度分别取450K和285K,热电单元比取0.5时,汤姆逊效应使制冷率降低29.98%,使制冷系数降低23.02%,使极限制冷温差降低11.35%。考虑到汤姆逊效应的影响,应当将有限数量的热电单元适当多地分配到热电发电机中。文中结论为实际TEG-TEC装置的设计和运行提供了理论指导。  相似文献   

2.
The effective thermoelectric parameters of a single stage cooler were measured as a function of temperature and compared with those of the n and p type materials from which the thermoelements were prepared. The performance of the cooler was calculated by a computerized iterative process using measured parameters and compared with experimentally determined characteristics. The influence of electrical contact resistance on the performance of the cooler is not negligible.  相似文献   

3.
The temperature distribution of a thermoelectric cooler under the influence of the Thomson effect, the Joule heating, the Fourier’s heat conduction, and the radiation and convection heat transfer is derived. The influence of the Thomson effect on the temperature profiles, on the fraction of the Joule’s heat that flows back to the low-temperature side, and consequently on the maximum attainable temperature difference and the maximum allowable heat load are emphasized and explored. The results suggest that the cooling efficiency of a thermoelectric cooler can be improved not only by increasing the figure-of-merit of the thermoelectric materials but also by taking advantage of the Thomson effect. A possible development direction for the thermoelectric materials is thus given.  相似文献   

4.
The performance of a solar thermoelectric cooler subjected to a modulated heat input is studied analytically. Numerical results show that modulation has no effect on the mean value of performance parameters but does significantly affect performance fluctuations about the mean value. High frequency modulation at low Ng/Nr ratio is found to be best suited for maximum oscillation of the coefficient of performance while low frequency modulation with high Ng/Nr ratio is best suited for maximum cold space temperature oscillation.  相似文献   

5.
Miniature thermoelectric cooler (TEC) has been considered as a promising device to achieve effective cooling in microprocessors and other small-scale equipments. To understand the performances of miniature thermoelectric coolers, three different thermoelectric cooling modules are analyzed through a three-dimensional numerical simulation. Particular attention is paid to the influence of scaling effect and Thomson effect on the cooling performance. Two different temperature differences of 0 and 10 K between the top and the bottom copper interconnectors are taken into account. In addition, three different modules of TEC, consisting of 8, 20 and 40 pairs of TEC, are investigated where a single TEC length decreases from 500 to 100 μm with the condition of fixed ratio of cross-sectional area to length. It is observed that when the number of pairs of TEC in a module is increased from 8 to 40, the cooling power of the module grows drastically, revealing that the miniature TEC is a desirable route to achieve thermoelectric cooling with high performance. The obtained results also suggest that the cooling power of a thermoelectric cooling module with Thomson effect can be improved by a factor of 5-7%, and the higher the number of pairs of TEC, the better the improvement of the Thomson effect on the cooling power.  相似文献   

6.
D. M. Rowe 《Applied Energy》1981,8(4):269-273
The efficiency of a single couple solar powered thermoelectric generator utilising fine-grained Si---Ge alloy thermoelements and a selective solar absorbing coating is investigated as a function of operating temperature and solar concentration factor. Optical losses and heat losses are taken into account. Under optimal operating conditions, the overall efficiency of the device is computed to be in excess of 12 per cent when operating between room temperature and 1000 K.  相似文献   

7.
田雷  陈林根  戈延林  王瑞博 《节能》2022,41(2):28-32
在已有文献建立的单级多单元热电发电机模型基础上,运用有限时间热力学理论,研究热电发电机有效功率最优性能,推导出有效功率表达式.通过数值计算,比较最大有效功率和最大功率条件下,热电发电机的效率,分析热电单元数和高温热源温度对热电发电机有效功率性能的影响.结果表明,最大有效功率下的效率高于最大功率下的效率;热电单元数和高温...  相似文献   

8.
This study conducts experimental investigation and numerical analysis for one-stage thermoelectric cooler (TEC) considering Thomson effect. Three Seebeck coefficient models are applied to numerically and experimentally study the Thomson effect on TEC. Results show that higher current, higher hot side temperature, or lower heat load can increase the temperature difference between the cold and hot sides. Opposite trends are found for COP. Specific current should be chosen as the upper threshold in thermoelectric cooler design. The cooling performance can improve when the Thomson heat maintains positive.  相似文献   

9.
《Journal of power sources》1998,73(2):193-198
A procedure is developed to assess the potential of thermoelectric modules when used for electrical power generation. The generating performance of a thermoelectric module is evaluated in terms of its power output, conversion efficiency and reliability, while the potential for improving its performance is investigated based upon the power-per-area, cost-per-watt and manufacture quality factor. The methods employed in determining these parameters are described and used to evaluate several commercially available modules. The results show that a thermoelectric module is a promising device for low temperature waste heat recovery.  相似文献   

10.
Necessitated by the dwindling supply of petroleum resources, various new automotive technologies have been actively developed from the perspective of achieving energy security and diversifying energy sources. Hybrid electric vehicles and electric vehicles are a few such examples. Such diversification requires the use of power control units essentially for power control, power conversion and power conditioning applications such as variable speed motor drives (dc–ac conversion), dc–dc converters and other similar devices. Power control unit of a hybrid electric vehicle or electric vehicle is essentially the brain of the hybrid system as it manages the power flow between the electric motor generator, battery and gas engine.Over the last few years, the performance of this power control unit has been improved and size has been reduced to attain higher efficiency and performance causing the heat dissipation as well as heat density to increase significantly. Efforts are constantly being made to reduce this size even further. As a consequence, a better high performance cooler/heat exchanger is required to maintain the active devices temperature within optimum range. Jet impingement is one such cooling scheme which has been widely used to dissipate transient and steady concentrated heat loads and can be applied to existing cooling system with minor modifications. The aim of the present study has therefore been to study the various cooling options based on impingement for application in hybrid electric vehicle and other similar consumer products and perform parametric and optimization study on the selected designs. Significant improvements in terms of thermal performance and volume reduction have been shown both experimentally and numerically.  相似文献   

11.
Numerical analysis has been carried out to figure out the performance of the thermoelectric micro-cooler with the three-dimensional model. A small-size and column-type thermoelectric cooler is considered and Bi2Te3 and Sb2Te3 are selected as the n- and p-type thermoelectric materials, respectively. The thickness of a thermoelectric element considered is 5–20 μm. The effect of parameters such as the temperature difference, the current, the thickness of a thermoelectric element, and the number of thermoelectric pairs on the performance of the cooler has been investigated. The predicted results show that the performance can be improved for the thick element with the large number of thermoelectric pairs or the small cross-sectional area of the element.  相似文献   

12.
Thermoelectric devices are solid‐state devices. Semiconductor thermoelectric cooling, based on the Peltier effect, has interesting capabilities compared to conventional cooling systems. In this work second law analysis of thermoelectric coolers has been done with the help of exergy destruction. In the first part, performance of single‐stage thermoelectric coolers and multi stage thermoelectric coolers has been compared for same number of thermoelectric elements i.e. 50. The performance parameters considered to compare their performance are rate of refrigeration, coefficient of performance, second law efficiency and exergy destruction. In second part, multi stage thermoelectric coolers have been analyzed for three different combinations of number of elements in two stages of thermoelectric coolers. The result of the analysis shows that the performance of a multi stage thermoelectric cooler which has total 50 elements gives best performance when it has 30 elements in hotter side and 20 elements in colder side out of the three cases considered. The comparison of single‐stage thermoelectric cooler and multistage thermoelectric cooler shows that for same number of elements rate of refrigeration (ROR) of single‐stage thermoelectric cooler is much higher than that of multi stage thermoelectric cooler. The COP remains same for both of them but the peak value of cop is obtained at much lower value of current supplied in multi stage thermoelectric cooler. Exergy destruction has constant values in single stage as well as multi stage thermoelectric cooler when the two stages have equal number of elements but it decreases with increase in x. The result of comparison of multistage thermoelectric cooler for three values of x i.e. 0.5, 1, 1.5 shows that the COP, ROR and second law efficiency improve and exergy destruction degrades with increase in x and the best performance has been obtained for x = 1.5 out of the three values considered. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A general thermodynamic formulation for the operation of a pulsed thermoelectric cooler is presented using the Gibbs law and simple energy balance method. An expression for the entropy flux (W/m2 K) is expressed in terms of the key parameters employed for the thermoelectric operation. Following the classical temperature–entropy (Ts) methodology, which has all the virtues of energy flow identification, the processes along the p–n legs of thermoelectrics, contributing to both useful and dissipative losses, are clearly mapped for the transient operation.  相似文献   

14.
Thermoelectric devices are considered a promising technique for recycling waste heat. In the present work, a three-dimensional numerical model is developed to study the output performance of thermoelectric devices. A comprehensive analysis is performed based on a conventional π-type thermoelectric couple. The results indicate that the maximum power of thermoelectric devices generally increases with a decrease in height and an increase in cross-sectional area; the maximum efficiency exhibits the opposite trends. The best way to reduce heat losses is by using ceramic plates with higher thermal conductivity. Moreover, the parasitic internal resistance exists in the thermoelements, and its influencing factors are studied. To minimize electric losses, an asymmetric structure is proposed for thermoelectric devices. The results exhibit that the optimal cross-sectional area ratio of the p-type and n-type legs (Sp/Sn) is mainly contingent upon the thermoelectric material parameters; the greater the differences in the parameters of p-type and n-type thermoelectric materials, the greater the gains provided by the asymmetric structure. Furthermore, the experimental data present great consistency with the numerical results. The research results may help guide the design of thermoelectric devices with relatively lower power losses.  相似文献   

15.
We present an improved theoretical model of a thermoelectric device which has been developed for geometrical optimization of the thermoelectric element legs and prediction of the performance of an optimum device in power generation mode. In contrast to the currently available methods, this model takes into account the effect of all the parameters contributing to the heat transfer process associated with the thermoelectric device.The model is used for a comparative evaluation of four thermoelectric modules. One of these is commercially available and the others are assumed to have an optimum geometry but with different design parameters (thermal and electrical contact layer properties).Results from the model are compared with experimental data of the commercial thermoelectric module in power generation mode with temperature gradient consistent with those achievable from a solar concentrator system. These show that it is important to have devices optimized specifically for generation, and to improve the contact layer of the thermoelements accordingly.  相似文献   

16.
Technical efficiency of thermoelectric power plants   总被引:1,自引:0,他引:1  
This paper analyses the technical efficiency of Portuguese thermoelectric power generating plants with a two-stage procedure. In the first stage, the plants' relative technical efficiency is estimated with DEA (data envelopment analysis) to establish which plants perform most efficiently. These plants could serve as peers to help improve performance of the least efficient plants. The paper ranks these plants according to their relative efficiency for the period 1996–2004. In a second stage, the Simar and Wilson [Simar, L., Wilson, P.W., 2007. Estimation and inference in two-stage, semi-parametric models of production processes. Journal of Econometrics 136, 1–34] bootstrapped procedure is adopted to estimate the efficiency drivers. Economic implications arising from the study are considered.  相似文献   

17.
The performance of a thermoelectric cooler (TEC) based thermal management system for an electronic packaging design that operates under a range of ambient conditions and system loads is examined using a standard model for the TEC and a thermal resistance network for the other components. Experiments were performed and it was found that the model predictions were in good agreement with the experimental results. An operating envelope is developed to characterize the TEC based thermal management system for peak and off peak operating conditions. Parametric studies were performed to analyze the effect of the number of TEC module(s) in the system, geometric factor of the thermo-elements and the cold to hot side thermal resistances on the system performance. The results showed that there is a tradeoff between the extent of off peak heat fluxes and ambient temperatures when the system can be operated at a low power penalty region and the maximum capacity of the system.  相似文献   

18.
To harvest the waste heat from exothermic reaction processes, a novel hybrid system model mainly incorporating a high-temperature proton exchange membrane fuel cell (HT-PEMFC) and a duplex thermoelectric cooler is conceptualized to theoretically predict the potential performance limit. The duplex thermoelectric cooler is composed of a thermoelectric generator (TEG) and a thermoelectric cooler (TEC), where the TEG harvests the waste heat to generate electricity and the TEC utilizes the generated electricity for cooling production. A mathematical model is established to estimate the proposed system performance from both exergetic and energetic perspectives considering various irreversible effects, from which effectiveness and practicality of the proposed system can be examined. The hybrid system maximal output power density allows 14.1% greater than that of the basic HT-PEMFC, whereas the according destruction rate density of exergy is decreased by 7.7%. The feasibility and effectiveness of the proposed system configuration are verified. Moreover, substantial parametric analyses indicate that the proposed system performance can be improved by elevating the HT-PEMFC operating temperature, inlet relative humidity and doping level while worsened by enhancing the leak current density, electrolyte thickness and Thomson coefficient. The results acquired may be helpful in designing and optimizing such an actual hybrid system.  相似文献   

19.
20.
An LD (laser diode), an essential unit of an LD package, has higher output power and faster working speed than an LED (light‐emitting diode) but it is more expensive. The thermal characteristic of an LD should be estimated as the working performance as it is closely related to its temperature. The thermal expansion causes changes in its shape and position, which lead to a crucial problem regarding light transmission. An LD is located on the submount for insulation and cooling and all of them work in a closed package filled with an inert gas. A TEC (thermoelectric cooler) is used in order to control the temperature of the package, especially the LD. © 2001 Scripta Technica, Heat Trans Asian Res, 30(5): 357‐370, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号