首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of corrosive environment on corrosion fatigue crack growth (CFCG) behavior of oil-grade nickel-base alloy 718 is studied. The results demonstrate that there is no obvious effect of 3.5 wt.% NaCl solution at RT, 50 °C and 80 °C on CGCG rates while 21 wt.% NaCl solution at 80 °C produces a deleterious effect on CFCG rates compared to the ones tested in air. Potentiodynamic polarization results show that alloy 718 exhibits passive behavior in 3.5 wt.% NaCl solution, while pitting corrosion resistance decreases with increasing solution temperature. Nevertheless, alloy 718 shows active corrosion behavior in 21 wt.% NaCl solution at 80 °C.  相似文献   

2.
Previous studies on very high-cycle fatigue behavior of thin silicon (Si) films suggest a strong environmental dependence of the degradation mechanism, the precise nature of which is still the subject of debate. This is partly due to contradictory evidence on the presence of thick post-cycling surface oxides. In the present study, 2 μm thick polycrystalline Si structures subjected to fully reversed stresses at 40 kHz are used to investigate fatigue degradation in a harsh environment (80 °C, 90% relative humidity). Transmission electron microscopy (TEM) on vertical through-thickness slices reveals highly localized thick oxides (~50 nm) in the area of large cyclic stress, but not in control specimens. Such localized oxides are likely to be missed with horizontal TEM slices, as done in previous studies. This study highlights the challenges in characterizing nanometer-scale phenomena with micron-scale specimens, and confirms the viability of the reaction-layer fatigue mechanism for the high-cycle/very high-cycle fatigue behavior of micron-scale silicon.  相似文献   

3.
《Intermetallics》2007,15(5-6):700-705
Hot compressive experiments of Ti–45Al–7Nb–0.15B–0.4W (mole fraction, %) alloy canned by 45# carbon steel were conducted at 1050–1230 °C on Gleeble1500 hot simulator with nominal deformation of 30% and strain rate of 0.01 s−1. The displacement–loading curves were obtained, and the macrostructure and microstructure were observed. The results show that the hot compressive temperature of TiAl alloy must be higher than 1050 °C and lower than 1230 °C with 45# steel can, and its optimum temperature is 1180 °C. The highest actual deformation of TiAl alloy canned by 45# steel is 50% with nominal deformation of 30%. The grains after being hotly compressed are flattened and elongated.  相似文献   

4.
The effect of the temperature on the compressive stress–strain behavior of Al/SiC nanoscale multilayers was studied by means of micropillar compression tests at 23 °C and 100 °C. The multilayers (composed of alternating layers of 60 nm in thickness of nanocrystalline Al and amorphous SiC) showed a very large hardening rate at 23 °C, which led to a flow stress of 3.1 ± 0.2 GPa at 8% strain. However, the flow stress (and the hardening rate) was reduced by 50% at 100 °C. Plastic deformation of the Al layers was the dominant deformation mechanism at both temperatures, but the Al layers were extruded out of the micropillar at 100 °C, while Al plastic flow was constrained by the SiC elastic layers at 23 °C. Finite element simulations of the micropillar compression test indicated the role played by different factors (flow stress of Al, interface strength and friction coefficient) on the mechanical behavior and were able to rationalize the differences in the stress–strain curves between 23 °C and 100 °C.  相似文献   

5.
Hot pressed dense SiC-(0, 10, 30 or 50 wt%)WC composites were subjected to erosion against SiC particles at 800 °C. Effects of WC content and angle of impingement (30°, 60° or 90°) on the erosion performance of composites were evaluated. Erosion rate ranged from 2.1 × 102 mm3/kg to 7.7 × 102 mm3/kg with varying WC content or angle of impingement. The erosion rate of the composites increased with increasing the impingement angle from 30° to 90°, and decreased with WC content up to 30 wt%. Minimum and maximum erosion wear rates were obtained for SiC-30 wt% WC composites at 30° and for SiC-50 wt% WC composites at normal impact, respectively. Grain fracture and pull-out were observed as major mechanisms of material removal for the composites. Decreased angle of impingement led to reduced grain fracture and pull-out, and hence reduction in material removal. Owing to increased fracture toughness with incorporation of WC particles, the composites showed less fracture and removal of WC particles up to 30 wt% reinforcement.  相似文献   

6.
《Intermetallics》2007,15(5-6):687-693
Mo–Si–B alloys are being considered as possible candidates for high-temperature applications beyond the capabilities of Ni-based superalloys. In this paper, the high-temperature (1000–1400 °C) compression response over a range of quasi-static strain rates, as well as the monotonic and cyclic crack growth behaviors (as a function of temperature from 20 °C to 1400 °C) of a two-phase Mo–Si–B alloy containing a Mo solid solution matrix (Mo(Si,B)) with ∼38 vol% of the T2 phase (Mo5SiB2) is discussed. Analysis of the compression results confirmed that deformation in the temperature–strain-rate space evaluated is matrix-dominated, yielding an activation energy of ∼415–445 kJ/mol. Fracture toughness of the Mo–Si–B alloy varies from ∼8 MPa√m at room temperature to ∼25 MPa√m at 1400 °C, the increase in toughness with temperature being steepest between 1200 °C and 1400 °C. S–N response at room temperature is shallow whereas at 1200 °C, a definitive fatigue response is observed. Fatigue crack growth studies using R = 0.1 confirm the Paris slope for the two alloys to be high at room temperature (∼20–30) but decreases with increasing temperature to ∼3 at 1400 °C. The crack growth rate (da/dN) for a fixed value of ΔK in the Paris regime in the 900–1400 °C range, increases with increasing temperature.  相似文献   

7.
The corrosion rate of copper and bronze Cu-8 wt.%Sn increased rapidly when the concentration of formic or acetic acid in air reached about 300 ppb at 80% relative humidity (RH) and a temperature of 20 °C. It decreased slowly during the several days after pollutant removal due to the slow rate of pollutant desorption from the metal surfaces. Corrosion of these metals was barely affected by the acids at RH up to 60%. For iron, the critical concentration of formic acid in air which led to surface activation at 80% RH was between 1000 and 1590 ppb.  相似文献   

8.
The structural evolution of Ni/Al multilayer thin films with temperature was studied by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and X-ray diffraction (XRD). Thin films with nanometric Ni and Al alternated layers were deposited by d.c. magnetron sputtering. In our experiments, we used a bilayer thickness of 5, 14 and 30 nm and a total film thickness ranging from 2 to 2.7 μm. The XRD patterns of the as-deposited sample revealed only peaks of Al and Ni. DSC experiments were performed on freestanding films, from room temperature to 700 °C at 10 and 40 °C/min. Two exothermic reactions were detected in the DSC curves of the film with a 30 nm bilayer thickness, with peak temperatures at 230 and 330 °C. The films with 5 and 14 nm bilayer thickness presented only one exothermic peak at 190 and 250 °C, respectively. To identify the intermetallic reaction products, DSC samples were examined by XRD. NiAl formation corresponds to one single DSC peak, for films with short bilayer thicknesses (5 and 14 nm). The films with 30 nm bilayer thickness were heated at 250 °C (T = T1st peak), 300 °C (T1st peak < T < T2nd peak), 450 °C (T > T2nd peak) and 700 °C. The XRD results indicated that at 250 °C the phase formed was NiAl3, whilst NiAl3 and Ni2Al3 phases were identified at 300 °C. For the 450 °C sample, only NiAl was detected. Further heating to 700 °C promotes the growth of NiAl grains.  相似文献   

9.
The fatigue behavior of a polycrystalline nickel-based superalloy René 88DT was examined in the lifetime regime of 105–109 cycles at 593 °C in air using an ultrasonic fatigue apparatus operating at frequencies close to 20 kHz. Three experimental techniques were combined to obtain new insights into the crack initiation process: serial sectioning, electron backscatter diffraction and quantitative fractographic analysis. Most fatigue failures initiated from internal microstructural sites comprised of large grains. Large crystallographic facets formed at crack initiation sites due to cyclic strain localization on {1 1 1} slip planes in the region close to Σ3 twin boundaries in large grains having high Schmid factors. The micromechanical mechanism of crystallographic fatigue crack initiation was analyzed in terms of both resolved shear stress and elastic incompatibility stresses in regions close to Σ3 twin boundaries. The influence of critical microstructure features on fatigue crack initiation and fatigue life variability is discussed.  相似文献   

10.
Si-rich hydrogenated amorphous silicon carbide thin films were prepared by plasma-enhanced chemical vapor deposition technique. As-deposited films were subsequently annealed at 900 °C and 1000 °C to form Si nanocrystals embedded in amorphous SiC matrix. Raman spectra demonstrate the formation of Si nanocrystals with size around 7–9 nm. For the sample annealed at 1000 °C, the crystallinity can be reached to 70%. As increasing the annealing temperature, the dark conductivity is increased accompanying with the increase of crystallinity of the film. The dark conductivity reaches to 1.2 × 10?6 S cm?1 for the sample annealed at 1000 °C, which is 4 orders of magnitude higher than that of as-deposited film. It is found that the carrier transport process is dominated by the thermally activated transport process according to the temperature-dependent conductivity results.  相似文献   

11.
Green compacts of W–bronze were encapsulated in shells of bronze powder, placed in a ceramic mold and sintered in alumina tube furnace at 1150 °C. Throughout the sintering cooling stage the differential coefficient of thermal expansion ΔCTE of W–bronze was employed to induce an external compressive densification action. The process included simultaneous sintering, hot isostatic pressing (HIP) and infiltration act to enhance densification. By this technique, pilot sintered compacts of different W50–80 wt.%–pre-mix bronze of 97–99% theoretical density were produced. This process resulted in compacts of higher hardness, higher sintered density and better structure homogeneity as opposed to similar compacts densified by the conventional sintering process. The results showed a gain in hardness by 10–20% and in density by 5–15%. The impact of different cooling rates of 3, 4, 8 and 30 °C min?1 on sintered density, microstructure and densification mechanisms was examined and evaluated. Low cooling rates of 3 and 4 °C min?1 gave the best results.  相似文献   

12.
Modern high-frequency electronic technology demands Mn–Zn soft ferrite for high DC-bias and low power loss applications. In this study, DMR50B ferrite material with a very attractive DC-bias property and with a lower power loss at high frequency up to 3 MHz was developed employing a conventional ceramic powder processing technique based on our previous study of DMR50 material, indicating its magnetic properties can be further improved by microstructure homogeneity. The core loss is around 200 kW/m3 at 3 MHz, 10 mT and 100 °C, and only around 20 kW/m3 at 700 kHz, 30 mT and 100 °C; its cutoff frequency fr is ~4 MHz and its incremental permeability μΔ remains constant until HDC = 100 A/m. Furthermore, the electromagnetic characteristics and the microstructure of this new DMR50B material are also discussed.  相似文献   

13.
The low cycle fatigue behaviour of precipitation strengthened nickel-base superalloy 720Li containing a low concentration of interstitial carbon and boron was studied at 25, 400 and 650 °C. Cyclic stress response at all temperatures was stable under fully reversed constant total strain amplitude (Δε/2) when Δε/2 ? 0.6%. At Δε/2 > 0.6%, cyclic hardening was followed by softening, until fracture at 25 and 650 °C. At 400 °C, however, cyclic stress plateaued after initial hardening. Dislocation–dislocation interactions and precipitate shearing were the micromechanisms responsible for the cyclic hardening and softening, respectively. The number of reversals to failure vs. plastic strain amplitude plot exhibits a bilinear Coffin–Manson relation. Transmission electron microscopy substructures revealed that planar slip was the major deformation mode under the conditions examined. However, differences in its distribution were observed to be the cause for the bilinearity in fatigue lives. The presence of fine deformation twins at low Δε/2 at 650 °C suggests the role of twinning in homogenization of cyclic deformation.  相似文献   

14.
Fe–Si alloys are widely used for magnetic applications. However, it is very difficult to process Fe–Si with a silicon content exceeding 3.5 wt.%Si (upper limit for products commercially available by the I/M route) due to the alloy's low ductility, which is attributed mainly to the formation of B2 and DO3 ordered phases that embrittle the material. To overcome this obstacle, the main focus of this work was to produce thin sheets of Fe–5 wt.%Si alloy in two steps: (1) as a Fe–3.5%Si + 3%Sip (Si particles) composite, using spray forming, and (2) rolling and heat treating (HT) the composite to dissolve the silicon and homogenize its content throughout the thickness of the sheet. To this end, 3 wt.%Sip were co-injected into the main stream of the Fe–3.5 wt.%Si spray, followed by hot-rolling of the billet at 850 °C to obtain 0.45 mm gauge thin sheets. The final material was heat-treated at 780/510 °C for 8 h or at 1250 °C for 1 h and then air cooled. The grain orientation was analyzed by EBSD and the distribution of iron, silicon and impurities was identified by X-ray dot mapping. The heat treatment caused diffusion and dissolution of the silicon particles and grain growth. However, the final silicon content was strongly dependent on the atmosphere of the heat treatment furnace. In the absence of oxygen, the silicon content reached 4.9 wt.% distributed homogeneously throughout the thickness of the composite. In the presence of oxygen, the silicon diffused to the surface and only 3.5 wt.% remained in the matrix.  相似文献   

15.
Spark plasma sintering (SPS) experiments were conducted to investigate the effect of the processing parameters such as temperature, mechanical pressure and dwell time on densification behavior of monolithic chromium diboride. The sintering experiments were performed at different temperatures ranging from 1100 °C to 1900 °C under the mechanical pressure of 30 MPa–70 MPa for 1 min–15 min duration. The onset temperature for the densification of CrB2 is observed to be 1300 °C at 50 MPa. High dense chromium diboride (98.4%ρth) compact was obtained when processed at 1900 °C under a mechanical pressure of 70 MPa for 15 min duration. Hardness and fracture toughness of high density monolithic CrB2 (98.4%ρth) sample were measured to be 15.89 ± 1.3 GPa and 1.8 ± 0.14 MPa·m1/2 respectively.  相似文献   

16.
Dislocation etch-pit structures on multicrystalline silicon rods deformed at 900 °C in four-point bending were studied prior to and after a high-temperature annealing. After deformation, the majority of the dislocation etch-pits were aligned along traces of {1 1 1} planes. Certain localized areas revealed network structures, where etch-pit arrays deviated in the range of 2-10° from the {1 1 1} plane traces. After annealing at 1350 °C for 12 h, a marked change in dislocation density and structure which varied from grain to grain was observed. Some grains showed incomplete polygonized structures, with notable irregularities and Y-junctions. The results were compared with observations on as-cast industrial multicrystalline silicon wafers for solar cells, where similar incomplete polygonized structures can be found.  相似文献   

17.
《Acta Materialia》2007,55(6):1885-1894
This paper describes a microstructural and property investigation of an Al–5.31Mg–1.15Li–0.28Zr alloy produced by spraycasting and downstream processing. Following a dispersoid precipitation treatment of 4 h at 400 °C, samples were hot compressed at strain rates of 2, 1, 0.2 and 0.1 × 10−2 s−1 at temperatures between 250 and 475 °C. Electron backscattered diffraction showed a strong dependence of recrystallised grain size on deformation temperature. At 250 °C and faster strain rates at 325 °C, a network of fine recrystallised necklace grains formed by progressive lattice rotation. At 325 °C at slow strain rates and at 400 °C and higher, dynamic recrystallisation occurred by discontinuous nucleation and growth at regions of microscopic strain localisation such as grain boundaries and triple points. The microstructures from small-scale hot compression experiments were compared with larger forgings under similar conditions and microstructural evolution was broadly similar. Mechanical properties of larger-scale forgings exceeded the targets for mechanically alloyed Al–Mg–Li alloy AA5091.  相似文献   

18.
6061 O Al alloy foils were welded to form monolithic and SiC fibre-embedded samples using the ultrasonic consolidation (UC) process. Contact pressures of 135, 155 and 175 MPa were investigated at 20 kHz frequency, 50% of the oscillation amplitude, 34.5 mm s?1 sonotrode velocity and 20 °C. Deformed microstructures were analysed using electron backscatter diffraction (EBSD). At all contact pressures deformation occurs by non-steady state dislocation glide. Dynamic recovery is active in the upper and lower foils. Friction at the welding interface, instantaneous internal temperatures (0.5–0.8 of the melting temperature, Tm), contact pressure and fast strain rates result in transient microstructures and grain size reduction by continuous dynamic recrystallization (CDRX) within the bonding zone. Bonding occurs by local grain boundary migration, which allows diffusion and atom interlocking across the contact between two clean surfaces. Textures weaken with increasing contact pressure due to increased strain hardening and different grain rotation rates. High contact pressures enhance dynamic recovery and CDRX. Deformation around the fibre is intense within 50 μm and extends to 450 μm from it.  相似文献   

19.
Polyaniline (PANI) was prepared by the oxidative polymerization of aniline. The deprotonated product, a PANI base, was carbonized in an inert atmosphere at temperatures up to 800 °C for various times. The mass decreased to 40–50 wt.% at temperatures above 600 °C. The progress of molecular structure during carbonization was followed by infrared and Raman spectroscopies. The carbonization at 650 °C for 1 h is suggested for the optimum conversion of PANI to carbon. The product retained the original globular structure of PANI. The conductivity of the carbonized material was low for carbonizations below 600 °C, <10?10 S cm?1, and increased to 10?4 S cm?1 after treatment at 800 °C. The content of nitrogen, ~10 wt.%, was not affected appreciably by the carbonization.  相似文献   

20.
Simple test castings were used to study the effect of cooling rate and carbon content in as-cast microstructure of alloy ASTM F75, Co–26 wt.% Cr–5.7 wt.% Mo. Alloys with four C content (0.45, 0.33, 0.36 and 0.25 wt.%) were poured into investment ceramic molds. In order to obtain different cooling rates, the castings were constituted of three axisymmetrical cylinders of different diameters (12, 16 and 24 mm). Cooling curves were obtained from each cylinder and the fraction of secondary phases in as-cast microstructure was measured by image analysis. Average cooling rates of 100, 60 and 20 °C/min, were obtained in the 12, 16 and 24 mm diameter cylinders respectively, at the first solidification step occurring in the temperature range from 1390 to 1350 °C. A significant effect of this cooling rate range on the fraction of secondary phase was not observed.It was observed that the fraction of blocky carbides increased proportionally as the C content increased, whereas the amount of the eutectoid constituent showed a significant increase only in the sample containing 0.45 wt.%, as compared with the samples of other carbon contents. It was also found that the initial solidification undercooling affects the temperature of sigma phase precipitation with which the solidification of the alloy is completed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号