首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The optical response of materials based on gold nanoparticle assemblies depends on many parameters connected to both material morphology and light excitation characteristics. The optical energy absorbed is then converted into heat through different nanoscale energy exchange mechanisms. This heating subsequently modifies itself the optical properties. We investigate the interplay between the optical and thermal responses of nanocomposite media under its theoretical aspect. In this first paper, the thermal response of gold nanoparticle assemblies under pulsed optical excitation is considered. Both conventional and original modelling approaches are presented. We first underline the role of electromagnetic interactions between particles in a dense assembly in its linear optical response. We then show how the interaction of light with matrix-embedded gold nanoparticles can result in the generation of thermal excitations through different energy exchange mechanisms. Finally, we demonstrate the possible significant influence of the heat carrier ballistic regime and phonon rarefaction in the cooling dynamics of an embedded gold nanoparticle subsequent to ultrafast pulsed laser excitation.  相似文献   

3.
Formation of the orthorhombic phase of perovskite crystals with 3d elements has been considered and models of the crystal structures of LaMnO3, LaTiO3, YTiO3, LaVO3, and YVO3 have been constructed. A generalization of the results of previous studies has been performed with allowance for the effect of T 2g distortions. An analysis of local symmetrized distortions has shown that the structure of compounds with Ti3+ and V3+ ions is determined by the “rotational” distortions of the T 1g type (Q x , Q y , Q z ); the T 2g distortions are only secondary. At the same time, in LaMnO3 of special importance are Jahn-Teller E g distortions. All the crystals examined exhibit a strong coupling between the lattice and electronic degrees of freedom, which manifests itself in strong vibronic effects. In particular, the terms of the vibronic Hamiltonian that are quadratic in Q x , Q y , and Q z determine the orbital structure of t 2g compounds.  相似文献   

4.
The conductivity of a thermal-barrier coating composed of atmospheric plasma sprayed 8 mass percent yttria partially stabilized zirconia has been measured. This coating was sprayed on a substrate of 410 stainless steel. An absolute, steady-state measurement method was used to measure thermal conductivity from 400 to 800 K. The thermal conductivity of the coating is 0.62 W/(m×K). This measurement has shown to be temperature independent.  相似文献   

5.
Meng Zhao  Wei Pan 《Acta Materialia》2013,61(14):5496-5503
The evolution of lattice structure and thermal conductivity has been studied systematically for a range of Ti-doped, Y2O3-stabilized ZrO2 (YSZ) solid solutions. The mechanism of reducing the thermal conductivity by Ti doping has been determined. Ti4+ mainly substitutes for Zr4+ below a critical composition factor (x ? 0.08), above which the interstitial Ti4+ need to be considered separately. The effect of lattice defects caused by mass and radius differences between Ti4+ and Zr4+ ions on the phonon scattering coefficient was discussed quantitatively. And the reduction of oxygen vacancy by interstitial Ti4+ ions which increases the thermal conductivity at high Ti doping content was also determined. Concerning the integrated phase stability and thermo-mechanical properties, Ti-doped YSZ is believed to be a promising candidate for thermal barrier coatings at higher temperature.  相似文献   

6.
Interface engineering has been regarded as an effective strategy to manipulate the thermoelectric performance of materials.Here,we use a facile chemical electroless plating and a spark plasma sintering process to fabricate Ag-plated SnTe bulk.After sintering,a small amount of plated Ag can be doped into SnTe to suppress the Sn vacancies and the others form Ag precipitates with a size distribution from nanoscale to microscale,which introduces Ag/SnTe interfaces to enhance the Seebeck coefficient via energy filtering effect.Simultaneously,these structures result in strong scattering to reach a low lattice thermal conductivity of-0.62 W·m–1·K–1.Consequently,a maximum figure of merit(zT)of-0.67 at 823 K is achieved in 2 wt%Ag-plated SnTe,which is-60%higher than that of pristine SnTe.Moreover,the microhardness indentation test results show that the mean microhardness of 2 wt%Ag-plated SnTe is HV 64.26,which is much higher than that of pristine SnTe,indicating that Ag electroless plating can improve the mechanical properties of SnTe.This work has provided a facile and eco-friendly method to realize the interface engineering for manipulating the thermoelectric and mechanical properties of SnTe.  相似文献   

7.
In this study, novel three Schiff bases of melamine were synthesized via condensation reaction of melamine with salicylaldehyde, 3-hydroxybenzaldehyde, and 4-hydroxybenzaldehyde namely N,N′,N′′,-tris[(2-hydroxyphenyl)methylene]-1,3,5-triazine-2,4,6-triamine (2-HPMTT), N,N′,N′′-tris[(3-hydroxyphenyl)methylene]-1,3,5-triazine-2,4,6-triamine (3-HPMTT), N,N′,N′′-tris[(4-hydroxyphenyl)methylene]-1,3,5-triazine-2,4,6-triamine (4-HPMTT), respectively. Then, oligo/polyphenol derivatives of these Schiff bases were obtained by grafting melamine onto oligosalicylaldehyde (OSA), oligo-3-hydroxybenzaldehyde, and oligo-4-hydroxybenzaldehyde that have generate names of poly-N,N′,N′′-tris[(2-hydroxyphenyl)methylene]-1,3,5-triazine-2,4,6-triamine (P-2-HPMTT), poly-N, N′,N′′-tris[(3-hydroxyphenyl)methylene]-1,3,5-triazine-2,4,6-triamine (P-3-HPMTT), and oligo-N,N′,N′′-tris[(4-hydroxyphenyl)methylene]-1,3,5-triazine-2,4,6-triamine (O-4-HPMTT), respectively. The structures of the synthesized compounds were confirmed by FT-IR, UV–vis, 1H NMR, and 13C NMR techniques. The characterization was made by TG-DTA, DSC, size exclusion chromatography (SEC), and solubility tests. Electrical conductivities of the synthesized materials were measured by four-point probe technique using a Keithley 2400 electrometer showing that the synthesized oligo/polyphenols have higher electrical conductivities than the monomeric Schiff bases. Also considerable increases in the conductivities were observed when they were doped with iodine as a doping agent. The order of increase rates of the conductivities were found as follows: 2-HPMTT > P-2-HPMTT > P-3-HPMTT > 3-HPMTT > 4-HPMTT > P-4-HPMTT. Additionally, the optical band gaps (Eg) were calculated by using the absorption spectra and found to be 2.78, 2.17, 3.58, 3.30, 4.03, and 2.82 eV for 2-HPMTT, P-2-HPMTT, 3-HPMTT, P-3-HPMTT, 4-HPMTT, and O-4-HPMTT, respectively.  相似文献   

8.
The phonon conductivities of CoSb3 and its Ba-filled structure Bax(CoSb3)4 are investigated using first-principle calculations and molecular dynamics (MD) simulations, along with the Green–Kubo theory. The effects of fillers on the reduction of the phonon conductivity of filled skutterudites are then explored. It is found that the coupling between filler and host is strong, with minor anharmonicity. The phonon density of states and its dispersion are significantly influenced by filler-induced softening of the host bonds (especially the short Sb–Sb bonds). Lattice dynamics and MD simulations show that, without a change in the host interatomic potentials, the filler–host bonding alone cannot lead to significant alteration of acoustic phonons or lowering of phonon conductivity. The observed smaller phonon conductivity of partially filled skutterudites is explained by treating it as a solid solution of the empty and fully filled structures.  相似文献   

9.
Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may be encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser-simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8% Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m K to 1.15, 1.19, and 1.5 W/m K after 30 h of testing at surface temperatures of 990, 1100, and 1320 °C, respectively, Hardness and elastic modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and microindentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface and to 7.5 GPa at the ceramic coating surface after 120 h of testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced microporosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various TBC applications.  相似文献   

10.
We performed the semiempirical molecular dynamics (MD) simulation for perovskite type BaUO3 and BaZrO3, and analyzed their thermal conductivities. The Morse-type potential function added to the Busing-Ida type potential was employed for the ionic interactions. The interatomic potential parameters were determined based on the experimental values of the lattice parameters of the perovskites. From the MD simulation, it is suggested that BaUO3 has a larger phonon scattering probability than BaZrO3, indicating that the thermal conductivity of BaUO3 is lower than that of BaZrO3. This result agrees well with the experimental data measured by the present authors.  相似文献   

11.
AIN/Al composites are a potentially new kind of thermal management material for electronic packaging and heat sink applications.The spark plasma sintering(SPS)technique was used for the first time to prepare the AIN/Al composites,and attention was focused on the effects of sintering parameters on the relative density,microstructure and,in particular,thermal conductivity behavior of the composites.The results showed that the relative density and thermal conductivity of the composites increased with increasing sintering temperature and pressure.The composites sintered at 1550℃ for 5 min under 70 Mpa showed the maximum relative density and thermal conductivity,corresponding to 99% and 97.5 W·m-1·K-1,respectively.However,the thermal conductivity of present AIN/Al composites is still far below the theoretical value.Possible reasons for this deviation were discussed.  相似文献   

12.
AlN/Al composites are a potentially new kind of thermal management material for electronic packaging and heat sink applications.The spark plasma sintering (SPS) technique was used for the first time to prepare the AlN/Al composites,and attention was focused on the effects of sintering parameters on the relative density,microstructure and,in particular,thermal conductivity behavior of the composites.The results showed that the relative density and thermal conductivity of the composites increased with increasing sintering temperature and pressure.The composites sintered at 1550 ℃ for 5 min under 70 MPa showed the maximum relative density and thermal conductivity,corresponding to 99% and 97.5 W m-1 K-1,respectively.However,the thermal conductivity of present AlN/Al composites is still far below the theoretical value.Possible reasons for this deviation were discussed.  相似文献   

13.
Aside from its importance as a design parameter for thermal barrier coatings, measuring thermal conductivity of thermal sprayed coatings itself provides a unique method to critically characterize the nature, quantity, and anisotropy of the defect morphologies in these splat-based coatings. In this paper, the authors present a systematic assessment of thermal conductivity of wide range using the flash diffusivity technique. For the case of plasma sprayed yttria-stabilized zirconia (YSZ), coatings obtained from wide-ranging initial powder morphologies as well as those fabricated under different particle states were characterized. Both in-plane and through-thickness properties were obtained. Other material systems that were considered include: metallic alloys and semiconductors of interests. Issues such as reproducibility and reliability in measurements were also considered and assessed. Finally, work in collaboration with the Oak Ridge National Laboratory (ORNL) for alternate approaches to characterization of thermal conductivity as well as high-temperature measurements was performed. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

14.
Thermal conductivity plays a critical role in the thermal transport of thermal-sprayed coatings. In this article, a combined image analysis and finite-element method approach is developed to assess thermal conductivity from high-resolution scanning electron microscopy images of the coating microstructure. Images are analyzed with a collection of image-processing algorithms to reveal the microscopic coating morphology. The processed digital image is used to generate a two-dimensional finite-element mesh in which pores, cracks, and the bulk coating material are identified. The effective thermal conductivity is then simulated using a commercial finite-element code. Results are presented for three coating material systems [yttriastabilized zirconia (YSZ), molybdenum, and NiAl], and the results are found to be in good agreement with the experimental values obtained using the laser flash method. The YSZ coatings are also annealed, and the analysis procedure was repeated to determine whether the technique can accurately assess changes in coating morphology. This article was originally published inBuilding on 100 Years of Success: Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, 2006.  相似文献   

15.
《Intermetallics》2000,8(4):447-449
Thermal conductivity of Ni3Ga-X ternary alloys was comprehensively surveyed for 16 kinds of ternary elements X. The direction of ridge in thermal conductivity contours in γ′ single phase field agrees with that of solubility lobe of γ′ phase in a ternary phase diagram. The ridge direction is determined by the sublattice occupation of a ternary element.  相似文献   

16.
17.
Ab-initio calculations of the resonant modes and frequencies for a number of possible fillers in p-type RFe3CoSb12 and RFe4Sb12 were carried out. The results indicate that, although the exact values of fillers’ resonant frequencies in p-type skutterudites are somewhat different from those in n-type Co-based skutterudites, the Einstein-like resonant modes of the fillers are similar to those in n-type materials. Experimentally, several pairs of the fillers were selected and double-filled p-type skutterudite compounds RxMyFe3CoSb12 (R, M = Ba, Ce, Nd, and Yb) were successfully synthesized. The reduction in the lattice thermal conductivity was realized by extending the range of resonant frequencies. As a result, enhanced ZT values above unity were achieved in these double-filled p-type skutterudites.  相似文献   

18.
19.
A series of Y2O3 fully stabilized HfO2 ceramics(Hf1-xYxO2-0.5x,x = 0.20,0.24,0.28,0.32,0.36 and 0.40)were synthesized by solid-state reaction at 1500℃.The phase...  相似文献   

20.
《Acta Materialia》2003,51(9):2569-2576
Measurement of thermal transport properties of nanocomposites of Ni-Zn ferrite in a copolymer matrix of aniline-formaldehyde has been made using transient plane source (TPS) technique. In the temperature range from room temperature to 140 °C both effective thermal conductivity (λe) and effective thermal diffusivity (χe) increase with increase in temperature and become maximum at a particular temperature which is a characteristic temperature for a given material. For further increase of temperature the λe and χe decreases slowly. An effect has also been made to predict theoretically these values by an empirical model. Addition of zinc concentration in the composite decreases the value of λe and χe over the entire range of temperature under investigation. It has also been found that the temperature at which a structural and bond strength change occurs depends on zinc concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号