首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work studies the influence of moisture absorption on the flexural properties of vinyl ester matrix–glass particle syntactic foams. The extent and the effect of moisture absorption are related to the wall thickness and volume fraction of the particles present in the composite. Four compositions of vinyl ester–glass systems are exposed to deionized and sea water conditions. Experimental findings are compared with results on virgin specimens. In general, the exposure of syntactic foams to a water environment yields a deterioration of Young’s modulus. This phenomenon is more prominent with deionized water as compared to sea water and increases with the particle volume fraction. In addition, results from water absorption tests show that syntactic foams have a lower diffusivity as compared to the neat resin. Experimental data are interpreted by using available modeling tools that allow for predicting the composite behavior from the properties of its constituents.  相似文献   

2.
Viscoelastic properties of hollow particle-reinforced composites called syntactic foams are studied using a dynamic mechanical analyzer. Glass hollow particles of three different wall thicknesses are incorporated in the volume fraction range of 0.3–0.6 in vinyl ester resin matrix to fabricate twelve compositions of syntactic foams. Storage modulus, loss modulus, and glass transition temperature are measured and related to the microstructural parameters of syntactic foams. In the first step, a temperature sweep from ?75 to 195 °C is applied at a fixed loading frequency of 1 Hz to obtain temperature dependent properties of syntactic foams. In the next step, selected four compositions of syntactic foams are studied for combined effect of temperature and loading frequency. A frequency sweep is applied in the range 1–100 Hz and the temperature is varied in the range 30–140 °C. Time–temperature superposition (TTS) principle is used to generate master curves for storage modulus over a wide frequency range. The room temperature loss modulus and maximum damping parameter, Tanδ, are found to have a linear relationship with the syntactic foam density. Increasing volume fraction of particles helps in improving the retention of storage modulus at high temperature in syntactic foams. Cole–Cole plot and William–Landel–Ferry equation are used to interpret the trends obtained from TTS. The correlations developed between the viscoelastic properties and material parameters help in tailoring the properties of syntactic foams as per requirements of an application.  相似文献   

3.
黄赤  汪波  秦岩  黄志雄 《复合材料学报》2016,33(8):1630-1637
以空心玻璃微球(HGM)填充环氧树脂制备了密度为0.56~0.91 g/cm3的HGM/环氧复合泡沫塑料。研究了HGM含量对复合泡沫塑料黏度、力学性能、动态力学性能及隔热性能的影响。结果表明:表面偶联处理后增加了HGM的表面亲油性,改善了其与基体树脂间的相容性和界面性能,有利于HGM/环氧复合泡沫塑料性能的提高;体系黏度与HGM含量呈正相关,与温度呈负相关;随着HGM含量的增加,HGM/环氧复合泡沫塑料的压缩强度、弯曲强度和拉伸强度均有一定程度的降低,但是比强度变化不大,材料得到很大程度的轻质化;HGM的引入使得HGM/环氧复合泡沫塑料玻璃化转变温度向低温方向偏移,储能模量呈现先减小后增加的趋势,导热系数由纯环氧树脂的0.203 W/(m·K)减小到HGM含量为40wt%时的0.126 W/(m·K)。HGM/环氧复合泡沫塑料阻尼性能和隔热性能均有所提高。   相似文献   

4.
The effect of presence of carbon nanofibers on the tensile and compressive properties of hollow particle filled composites is studied. Such composites, called syntactic foams, are known to have high specific modulus and low moisture absorption capabilities and are finding applications as core materials in aerospace and marine sandwich structures. The results of this study show that addition of 0.25 wt.% carbon nanofibers results in improvement in tensile modulus and strength compared to similar syntactic foam compositions that did not contain nanofibers. Compressive modulus decreased and strength remained largely unchanged for most compositions. Tensile and compressive failure features are analyzed using scanning electron microscopy.  相似文献   

5.
Syntactic foam composites of cyanate ester with varying volume fractions of resin and glass microballoon were processed and evaluated for tensile, flexural and compressive properties. The effect of nature and volume fraction of microballoon on the mechanical properties was studied. The mechanical properties showed a gradual decrease in strength with increase in volume fraction of microballoon. The specific strength values also manifested a similar order. A similar behaviour was observed for syntactic foams with microballoons of varying true density. The properties increased proportional to the strength of the microballoon in resin-rich systems implying a strong microballoon-resin interface, corroborated by Scanning Electron Microscopy studies. The compressive modulus showed a decreasing trend with enhanced microballoon loading.  相似文献   

6.
以环氧树脂为基体, 不同粒径空心玻璃微球为填充体, 制备了轻质高强复合泡沫塑料。通过单轴准静态压缩试验研究了空心微球的粒径大小对复合泡沫塑料的抗压性能的影响, 并采用SEM对复合泡沫塑料的微观结构进行观测。通过随机空间分布法建立了空心玻璃微球/环氧树脂复合泡沫塑料的实体模型, 并且使用有限元分析软件对复合泡沫塑料在1 kPa载荷下的应力分布进行了分析。结果表明, 在相同体积含量下, 当空心微球的粒径从30 μm增大到120 μm时, 复合泡沫塑料的抗压强度无明显变化。有限元分析的结果表明, 在复合泡沫塑料中主要承载部分为空心微球, 空心微球上的应力大于树脂基体上的应力。最大应力分布在空心微球的内壁, 结合SEM图像可推测, 空心微球在破裂之前受到充分的挤压, 并且从内壁产生裂纹。  相似文献   

7.
Syntactic foams are characterized for high strain rate compressive properties using Split-Hopkinson Pressure Bar (SHPB) technique in this study. The results at high strain rates are compared to quasi-static strain rate compressive properties of the same material. Four different types of syntactic foams are fabricated with the same matrix resin system but different size microballoons for testing purpose. The microballoons have the same outer radius. However, their internal radius is different leading to a difference in their density and strength. The volume fraction of the microballoons in syntactic foams is maintained at 0.65. Such an approach is helpful in isolating and identifying the contribution of matrix and microballoons to the dynamic compressive properties of syntactic foams. Results demonstrate considerable increase in peak strength of syntactic foams for higher strain rates and increasing density. It is also observed that the elastic modulus increases with increasing strain rate and density. Scanning electron microscopy is carried out to understand the fracture modes of these materials and the density effect on high strain rate properties of syntactic foam.  相似文献   

8.
Low dielectric constant materials play a key role in modern electronics. In this regard, hollow particle reinforced polymer matrix composites called syntactic foams may be useful due to their low and tailored dielectric constant. In the current study, vinyl ester matrix/glass hollow particle syntactic foams are analyzed to understand the effect of hollow particle wall thickness and volume fraction on the dielectric constant of syntactic foams. The dielectric constant is found to decrease with increase in the hollow particle volume fraction and decrease in the wall thickness. Theoretical estimates are obtained for the dielectric constant of syntactic foams. Parametric studies are conducted using the theoretical model. It is found that a wide range of syntactic foam compositions can be tailored to have the same dielectric constant, which provides possibility of independently tailoring density and other properties based on the requirement of the application.  相似文献   

9.
环氧树脂复合泡沫材料的压缩力学性能   总被引:5,自引:5,他引:0       下载免费PDF全文
对空心玻璃微珠填充环氧树脂复合泡沫材料进行了准静态压缩实验, 研究了材料的宏观压缩力学性能, 并提出了弹性模量和屈服强度的预测公式。此外, 对压缩试件的断口进行了宏、细观观察, 研究了材料的压缩破坏机理。结果表明, 复合泡沫材料在压缩过程中, 具有普通泡沫材料的应力-应变曲线的典型特征, 在应变为2 %左右时材料发生屈服, 在应变大于30 %后发生破坏。此外, 材料的杨氏模量和强度均随密度的减小而下降, 预测公式给出的结果与实验值基本一致。压缩试件断口的宏、细观观察表明, 复合泡沫材料主要的破坏形式为剪切引起的弹塑性破坏。   相似文献   

10.
The objective of this study is to compare the mechanical and water absorption properties of kenaf (Hibiscus cannabinus L.) fibre reinforced laminates made of three different resin systems. The use of different resin systems is considered so that potentially complex and expensive fibre treatments are avoided. The resin systems used include a polyester, a vinyl ester and an epoxy. Laminates of 15%, 22.5% and 30% fibre volume fraction were manufactured by resin transfer moulding. The laminates were tested for strength and modulus under tensile and flexural loading. Additionally, tests were carried out on laminates to determine the impact energy, impact strength and water absorption. The results revealed that properties were affected in markedly different ways by the resin system and the fibre volume fraction. Polyester laminates showed good modulus and impact properties, epoxy laminates displayed good strength values and vinyl ester laminates exhibited good water absorption characteristics. Scanning electron microscope studies show that epoxy laminates fail by fibre fracture, polyester laminates by fibre pull-out and vinyl ester laminates by a combination of the two. A comparison between kenaf and glass laminates revealed that the specific tensile and flexural moduli of both laminates are comparable at the volume fraction of 15%. However, glass laminates have much better specific properties than the kenaf laminates at high fibre volume fractions for all three resins used.  相似文献   

11.
The volume fraction effect on the high strain rate compressive properties of syntactic foams is characterized using a pulse-shaped Split-Hopkinson Pressure Bar (SHPB) technique. Eighteen different types of syntactic foams are fabricated with the same matrix resin system but six different microballoon volume fractions and three different size microballoons. The volume fractions of the microballoons in the syntactic foams are maintained at 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. The microballoons have the same mean outer radius of 40 μm, but different internal radii leading to a difference in their density. Analysis is carried out on the effect of microballoon volume fractions on the high strain rate properties for each type of syntactic foam. This approach is helpful in understanding the effect of microballoon reinforcement at different volume fractions on the dynamic compressive properties of syntactic foams. The results at high strain rates are compared to quasi-static strain rate compressive properties of the same material. The results show that there is a decrease in both compressive strength and modulus as the microballoon volume fraction increases for the same type of syntactic foam at all strain rates. However, at strain rates of quasi-static and 450/s, the decrease tends to be gradual across all volume fractions, while for strain rates of 800/s, there is a dramatic decrease from 10 to 20% followed by a gradual decline for most specimens. The fracture mode plays a major role in the dynamic behavior of syntactic foams.  相似文献   

12.
The compressive mechanical properties of two kinds of closed-cell aluminum foam–polymer composites (aluminum–epoxy, aluminum–polyurethane) were studied. The nonhomogeneous deformation features of the composites are presented based on the deformation distributions measured by the digital image correlation (DIC) method. The strain fluctuations rapidly grow with an increase in the compressive load. The uneven level of the deformation for the aluminum–polyurethane composite is lower than that for the aluminum–epoxy composite. The region of the preferentially fractured aluminum cell wall can be predicted by the strain distributions in two directions. The mechanical properties of the composites are investigated and compared to those of the aluminum foams. The enhancement effect of the epoxy resin on the Young’s modulus, the Poisson’s ratio and the compressive strength of the aluminum foams is greater than that of the polyurethane resin.  相似文献   

13.
The high-strain rate compressive properties of syntactic foams are characterized in this study. This study is performed using a pulse-shaped Split-Hopkinson Pressure Bar technique. Nine different types of syntactic foams are fabricated with the same matrix resin system but three different size microballoons and three different microballoon volume fractions. The microballoons have the same outer radius of 40 μm, but different internal radii leading to a difference in their densities. The volume fractions of the microballoons in the syntactic foams are maintained at 0.1, 0.3, and 0.6. Analysis is carried out on the effect of the microballoon radius ratio at each volume fraction on the high-strain rate properties. This approach is helpful in separating and categorizing the contribution of matrix and microballoons to the dynamic compressive properties of syntactic foams. The results at high-strain rates are compared to quasi-static strain rate compressive properties of the same material. The results show that there is little or no significant change in both compressive strength and modulus of syntactic foams at all radius ratios when tested at strain rates of 400–500/s compared to quasi-static rates. However, higher dynamic strength and stiffness values are obtained consistently at all radius ratios when tested at 800–1000/s compared to quasi-static values. It is observed that the radius ratio does not affect the syntactic foam properties significantly when tested at the same high-strain rate and volume fraction. Scanning electron microscopy is carried out to understand the fracture modes of the syntactic foams.  相似文献   

14.
空心微珠填充聚氨酯泡沫塑料的力学性能   总被引:2,自引:1,他引:1       下载免费PDF全文
对不同密度和不同填充质量比的空心玻璃微珠填充聚氨酯泡沫塑料进行拉、压实验,研究了微珠对复合泡沫塑料力学性能的影响。实验结果表明:复合泡沫塑料拉伸曲线特征与普通泡沫塑料类似,但具有不同于普通泡沫塑料的压缩应力-应变特性;材料密度越大,微珠对胞体壁的增强效果越好;微珠团聚和界面粘结不良将可能导致材料力学性能的下降。根据有限元模拟结果和试件破坏形貌的观察探讨了材料的变形和破坏机制。   相似文献   

15.
微波固化环氧泡沫材料的结构和性能研究   总被引:1,自引:1,他引:0  
以聚酰胺树脂、E51、E31环氧树脂为主要原料,以水为发泡剂,用微波方法制备了环氧泡沫材料,测定了环氧泡沫材料的密度和压缩性能,并对泡沫材料进行了FTIR、TGA、SEM、DMA分析.结果表明,用微波固化制备环氧泡沫材料具有高效率的特点,所制备的环氧泡沫具有优良的压缩力学性能;环氧组成对泡沫密度、泡沫结构、动态力学性能和热分解行为有较大影响.  相似文献   

16.
Aluminum–cenospheres syntactic foams of different compositions and varying relative densities were fabricated by powder metallurgy using a low compaction load (ranging from 200 MPa to 300 MPa). The produced composites were examined in terms of density, porosity, macro- and micro-structural characteristics. Mechanical properties of the sintered samples, like compressive strength and deformation mechanisms, quasi-elastic modulus and absorbed energy were also investigated. A novel theoretical model reflecting the compressive strength of aluminum–cenospheres syntactic foams was developed with respect to the production conditions (compact pressure) of the “green body”. Finally, the influence of the powder metallurgy route on the deformation mechanisms and fracture strength of the metal matrix syntactic foams was elicited, providing refined insight to optimum production parameters. The yielded results stipulate that characteristic properties like porosity inhomogeneity or insufficient bonding between matrix particles have a direct impact on the final properties of metal syntactic foams. As the compact pressure and the volume fraction of the cenospheres increases, composites exhibit a mechanical response typical of metal matrix syntactic foams.  相似文献   

17.
制备了空心玻璃微珠(HGM)/环氧树脂复合泡沫材料、泡沫铝-HGM/环氧树脂两类环氧树脂基复合材料, 测量了其在北方室内环境中自然老化前后的密度。通过一系列准静态压缩实验研究了HGM/环氧树脂和泡沫铝-HGM/环氧树脂两类复合材料的有效弹性模量、屈服极限等力学性能, 分析了其破坏形貌与材料结构的关系及力学性能改变的原因。研究表明: 环氧树脂老化后屈服极限有所降低, 但HGM/环氧树脂复合泡沫材料的力学性能随着HGM填充量的增加呈先增加后降低的趋势。泡沫铝/环氧树脂复合材料老化后的力学性能出现明显降低, 但添加HGM体积比高于20%的泡沫铝-HGM/环氧树脂复合材料的力学性能则有所增加。  相似文献   

18.
Syntactic foams are commonly used as core materials in composite sandwich structures for weight sensitive applications such as aircraft and spacecraft structures and boat hulls. Moisture absorption is highly undesirable in these applications. The present study evaluates the hygrothermal properties of two types of syntactic foams. Distribution of outer diameter of cenospheres (hollow particles) incorporated in both types of syntactic foams is the same but there is variation in the internal diameter causing difference in the density of syntactic foams. Epoxy resin is used as matrix material and the volume fractions of matrix and cenospheres are kept at 0.35 and 0.65 by volume, respectively. Moisture absorption experiments are conducted at two different temperatures, 25 and 70 °C and in deionized and salt waters. Non-destructive ultrasonic imaging technique is used to find the extent of moisture penetration and damage to the specimens. Syntactic foam samples are tested for compressive strength after moisture absorption and the results are compared with the compression test results of dry syntactic foam samples.  相似文献   

19.
Carbon nanofiber (CNF) reinforced epoxy matrix nanocomposites and CNF reinforced glass hollow particle filled syntactic foams are studied for electrical properties. The effect of CNF weight fraction, hollow particle volume fraction, and hollow particle wall thickness on impedance and dielectric constant are characterized. The results show that the impedance decreases and the dielectric constant increases with increasing CNF content in the composites. Nanocomposites containing 10 wt.% CNFs showed significantly higher dielectric constant because of the presence of a continuous network of CNFs in the composite. CNF reinforced syntactic foams showed higher dielectric constant than the neat resin. The CNF content had a more prominent effect on the dielectric constant than the glass hollow particle volume fraction and wall thickness. The Maxwell–Garnett and the Jayasundere–Smith models are modified to include the effect of hollow particle wall thickness and obtain predictions of dielectric constants of syntactic foams. The semi-empirical predictions obtained from Maxwell–Garnett models are closer to the experimental values. Lightweight syntactic foams, tailored for electrical properties, can be useful in electronic packaging applications.  相似文献   

20.
Graphene platelets (GPs) are two-dimensional thin plates containing few layers of graphene sheets. Compressive and tensile behaviors of epoxy-based syntactic foams with pristine GPs as additives are discussed in this article. Four sets of syntactic foams containing 0, 0.1, 0.3, and 0.5 vol.% of GPs were fabricated and tested. The volume fraction of microballoons in all syntactic foam samples was kept constant at 30%. Results indicated that the compressive and tensile moduli of the syntactic foams were significantly improved as compared to samples that did not contain GPs. The addition of GPs also enhanced the tensile strength while the compressive strength was only slightly increased. Optimal property improvements were obtained for very low filling fraction of approximately 0.3 vol.%. Samples with higher volume fraction of GPs (0.5%) showed deterioration in mechanical properties when compared to other GP containing samples. Transmission microscopy study indicated formation of voids enclosed by undispersed GPs in the samples which could explain the decline of the properties. High matrix porosity could also play an important role in this observation. Utilizing surface modified GPs could allow incorporation of higher volume fraction of GPs homogeneously, thus improving the mechanical properties of the syntactic foams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号