首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
基于支持向量机的食源性致病菌近红外光谱鉴别   总被引:2,自引:0,他引:2  
以近红外光谱法结合支持向量机对大肠杆菌O157∶H7、单增李斯特菌、金黄色葡萄球菌进行了分类鉴别。对预处理后的3 种食源性致病菌近红外光谱数据进行主成分分析,以前26 个主成分向量为支持向量机输入量建立支持向量机模型,对径向基函数核函数分类器与多项式核函数分类器进行了对比分析。结果表明,以径向基函数为核函数的支持向量机在核参数为0.5时对3 种食源性致病菌的鉴别效果最好,与国标方法相比结果一致,其鉴别准确率均达到100%。  相似文献   

2.
以建立一种高精度的无损苹果可溶性固形物含量的检测模型为目标,通过提取高光谱图像中圆形150像素感兴趣区域(ROI)内的平均光谱反射率,分别使用Savitzky-Golay平滑处理(S-G)、标准正态变量变换(SNV)和小波变换(Wavelet-Transform)对原始光谱数据进行预处理,然后利用连续投影算法(successive projection algorithm,SPA)提取特征波长,基于特征波长建立BP神经网络(BPNN)和遗传支持向量机(GA-SVR)预测模型。在GA-SVR建模过程中,采用遗传算法获取支持向量机的最优惩罚参数和核函数参数。研究结果表明,S-G预处理后的GASVR模型预测效果最佳,模型的预测相关系数为0.850 5,预测均方根误差为0.303 1,所以基于该ROI内数据建立的GA-SVR模型在提高模型性能方面是可行的。  相似文献   

3.
针对传统的纺织品检测受检测人员感官和精神状态影响,不同检测人员对同一样品的检测结果有偏差,且大部分传统的检测方法损伤纤维这一现象,以高光谱技术为基础设计了对8 种单组分纺织品材料进行识别分类的方法。对纺织品的高光谱数据预处理后,利用连续投影算法提取纺织材料的特征波长,在 920~ 2500 nm内将288个波长压缩至5 ~7 个(数据压缩至1.74%~ 2.43%),并基于最小二乘支持向量机对每种纺织品建立二类分类器,将获取到的特征波长导入到各自对应的分类器中进行训练,最后对测试样本进行识别分类。实验结果表明,640 个实验样本均被8 种二类分类器识别,高光谱成像技术可用于棉、涤纶、聚乙烯、羊毛、聚氯乙烯、锦纶、亚麻、蚕丝的识别。  相似文献   

4.
章恺  朱丽芳  李入林  王子异 《食品与机械》2024,40(5):107-112,226
目的:解决猕猴桃糖度无损检测方法存在的准确性差和效率低等问题。方法:提出一种将高光谱检测技术、最小二乘支持向量机和改进的鲸鱼算法相结合的猕猴桃糖度无损检测方法。通过高光谱检测系统采集猕猴桃的高光谱信息,对其进行预处理和特征波长筛选后,输入改进鲸鱼算法优化的最小二乘支持向量机模型,实现猕猴桃糖度的快速无损检测,并验证其性能。结果:所提方法可以实现猕猴桃糖度的快速无损检测,测试集决定系数为0.965 2,测试集均方根误差为0.880 5,平均检测时间为1.06 s。结论:将机器学习算法与高光谱检测技术相结合,可以实现猕猴桃糖度的快速无损检测。  相似文献   

5.
壶瓶枣轻微损伤可见/近红外光谱动态判别模型研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究快速识别轻微损伤壶瓶枣与完好壶瓶枣的有效方法,本文以轻微损伤壶瓶枣和完好壶瓶枣为研究对象,动态采集轻微损伤壶瓶枣和完好壶瓶枣的近红外光谱数据。采用S-G平滑与多元散射校正(MSC)相结合的方法预处理光谱数据,分别以预处理后的全光谱(FS)数据和采用主成分分析(PCA)法提取主成分、采用连续投影算法(SPA)提取特征波长作为输入变量,建立偏最小二乘判别分析(PLS-DA)和最小二乘支持向量机(LS-SVM)模型,比较4种损伤壶瓶枣及完好壶瓶枣的判别准确性。结果表明:采用PCA提取主成分有较明显的优势,对4种损伤壶瓶枣的判别准确性均能满足实际要求,且采用PCA-LS-SVM模型对4种轻微损伤壶瓶枣和完好壶瓶枣的正确判别率最佳,分别达到100%、86%、100%、100%和100%,总的正确判别率为97.2%。该研究为轻微损伤壶瓶枣的动态判别提供了新的理论基础。  相似文献   

6.
邓建猛  王红军  黎邹邹  黎源鸿 《食品与机械》2016,32(11):122-125,211
为了快速无损检测马铃薯外部品质,研究采用高光谱成像技术对马铃薯外部品质分级。选取合格、发芽、绿皮、孔洞4种马铃薯外部特征,获取光谱数据,采用不同预处理方法对光谱数据进行处理,并分别建立偏最小二乘判别模型,结果显示采用标准正态变量变换法(SNV)获得的模型效果最优。对预处理后的光谱数据利用连续投影算法(SPA)及加权权重法(WWM)分别优选出了13个和9个特征波段,对两种不同方法得出的特征波段分别建立了支持向量机判别模型,结果显示两种方法对预测集的判别准确率均达到了100%,WWM-SVM判别模型对校正集的交叉验证率为99.5%,高于SPA-SVM判别模型的交叉验证率。利用高光谱成像技术结合SPA-SVM和WWM-SVM对马铃薯外部品质进行分级具有可行性。  相似文献   

7.
基于近红外(near infrared,NIR)高光谱成像技术(900~1 700 nm)对0~4℃冷藏条件下猪肉的酸价变化进行快速无损检测研究。通过采集新鲜猪肉样品的高光谱图像,提取图像中感兴趣区域内的反射光谱信息,再经移动平均值平滑、卷积平滑、中值滤波平滑、高斯滤波平滑、标准化校正、多元散射校正、基线校正、标准正态变量变换等8种方式预处理原始光谱(raw extracted spectra,RAW),利用偏最小二乘(partial least squares,PLS)算法建立酸价预测模型。结果显示,基于RAW光谱(rP=0. 824,RMSEP=0. 594 mg/g)和BC光谱(rP=0. 825,RMSEP=0. 587 mg/g)构建的全波段PLS模型(RAW-PLS和BC-PLS)预测酸价效果较好。使用回归系数法(regression coefficient,RC)和连续投影算法筛选最优波长优化模型。结果显示,基于RC法从RAW光谱中筛选的28个最优波长构建的RAW-RC-PLS模型预测猪肉酸价效果最好(rP=0. 846,RMSEP=0. 569 mg/g)。研究表明,利用NIR高光谱成像技术构建PLS模型可潜在实现猪肉酸价的快速无损评价。  相似文献   

8.
目的:解决食品企业现有大米品质检测方法存在的准确性低和效率差等问题。方法:基于高光谱数据采集系统,提出一种结合改进细菌觅食算法和最小二乘支持向量机的贮藏大米品质快速无损检测方法。通过改进的细菌觅食算法对最小二乘支持向量机超参数(正则化参数和核参数)进行寻优,实现贮藏大米品质的快速无损检测。通过试验分析其性能。结果:所提方法可以实现贮藏大米脂肪酸含量的快速无损检测,决定系数为0.940 5,均方根误差为0.543 5,平均检测时间为1.12 s。结论:所提检测方法具有较高的检测性能,可用于大米品质的鉴别与检测。  相似文献   

9.
鸡蛋新鲜度等级评价是鸡蛋品质检测过程中的一项重要技术指标。选取了不同储藏环境的鸡蛋样本并采集其高光谱图像信息与光谱信息,提取图像特征和光谱特征;采用并行式融合方法进行图谱特征融合,基于连续投影法-灰度共生矩阵方法进行特征提取;建立支持向量机鸡蛋新鲜度判别模型。采用粒子群算法优化模型,训练集准确率达到85%,预测集准确率达到76.67%。为了解决单模型可能出现的偶然性误判问题,采用递进式特征融合方法,引入多模型共识策略和深度残差网络ResNet 50分析方法。建立基于连续投影法-方向梯度直方图特征提取方法的多模型共识策略,该模型的训练集准确率提升至89%,预测集准确率提升至88%;同时,建立基于连续投影法-方向梯度直方图特征提取方法的深度残差网络ResNet 50模型,模型的训练集准确率提升至89%,预测集的准确率提升至86.67%。图谱特征融合建模分析表明,并行式融合方法和递进式融合方法对鸡蛋新鲜度等级判别都有一定的可识别性,且递进式融合算法的多模型共识策略判别效果更佳。  相似文献   

10.
利用近红外(NIR)高光谱成像技术结合连续投影算法(SPA)快速、无损检测五花肉的过氧化值。通过高光谱成像系统采集样品的光谱图像,提取其反射光谱信息,经过基线校正(BC)、高斯滤波平滑(GFS)、中值滤波平滑(MFS)、卷积平滑(SGS)、移动平均值平滑(MAS)、标准正态变量变换(SNV)、多元散射校正(MSC)七种预处理后,利用偏最小二乘(PLS)建立预测模型。使用SPA筛选最优波长,重新预算,构建优化的PLS模型和多元线性回归(MLR)模型。结果显示,经过BC预处理(RP=0.960,RMSEP=5.15×10-4g/100 g)和原始数据RAW(RP=0.960,RMSEP=4.89×10-4g/100 g)的全波段PLS模型(F-PLS)预测过氧化值效果较好。优化结果显示,RAW的MLR模型(RP=0.968,RMSEP=4.12×10-4 g/100 g)预测效果更好。研究表明,NIR高光谱成像技术联用SPA算法可潜在实现对五花肉过氧化值的快速无损检测。  相似文献   

11.
为实现正常辣椒和缺陷辣椒(黑斑、虫蚀和花皮)的快速检测,通过图像采集,利用中值滤波去噪;提取样本图像24个颜色特征值,20个纹理特征值,利用Otsu算法阈值分割,提取2个形态特征值;选用连续投影法(Suc-cessive Projections Algorithm,SPA)优选14个特征值,结合最小二乘支持向量机(Le...  相似文献   

12.
张萌  贾世杰 《食品与机械》2021,37(1):99-103
在高光谱成像技术的基础上,提出了一种应用于水果表面农药残留的无损检测方法。对采集数据进行预处理和特征提取,通过细菌群体趋药性算法找到最优的最小二乘支持向量机参数,建立农残检测模型,并与最小二乘支持向量机模型进行比较,验证该模型的优越性和准确性。结果表明,基于连续投影法特征波长结合文中检测模型具有最高的检测精度,其准确率达97.92%。  相似文献   

13.
应用高光谱成像技术结合连续投影算法(SPA)实现葡萄果皮中花色苷含量的快速无损检测。采集60 组样本高光谱图像,获取样本光谱曲线,并采用多元散射校正预处理方法提高信噪比。然后采用SPA选择光谱变量,将其作为多元线性回归(MLR)、偏最小二乘(PLS)模型和BP神经网络(BPNN)的输入变量,分别建立SPAMLR、SPA-PLS和SPA-BPNN模型并与全光谱变量PLS模型相比较。结果表明,SPA-MLR、SPA-BPNN和SPA-PLS模型的预测精度均优于全光谱变量PLS模型,其中SPA-PLS模型获得了最佳预测结果,其预测相关系数Rp和预测均方根误差(RMSEP)分别为0.900 0和0.550 6。结果表明,利用近红外高光谱成像技术能够有效检测酿酒葡萄果皮中花色苷含量。  相似文献   

14.
谭超 《中国造纸》2005,24(12):22-24
研究了基于最小二乘支持向量机的软测量建模方法,并将其应用于造纸企业碱回收蒸发工段黑液浓度的预测.应用结果表明,该建模方法的可行性和有效性完全能满足工业生产的需要.  相似文献   

15.
利用高光谱技术对灵武长枣果皮强度检测进行研究,为灵武长枣外部品质无损检测提供科学方法。采集120个灵武长枣的4001000 nm的高光谱图像,对光谱数据进行预处理;应用连续投影算法(SPA)、正自适应加权算法(CARS)和无信息变量消除法(UVE)对原始光谱数据提取特征波长;分别建立基于全光谱和特征波长的偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)果皮强度预测模型。结果表明:采用标准正态变换(SNV)预处理算法效果最优,其PLSR模型的交叉验证相关系数(Rcv)为0.8207,交叉验证均方根误差(RMSECV)为9.9630;利用SPA、CARS和UVE法从全光谱的125个波长中分别选取出29个、31个和31个特征波长;而基于全光谱建立的LS-SVM模型效果最优,其预测相关系数(Rp)为0.9555,预测均方根误差(RMSEP)为3.8282;研究结果表明基于高光谱成像技术采集的灵武长枣漫反射光谱进行果皮强度无损检测具有可行性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号