首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation was conducted to study the suitability of vegetable oils as bioquenchants for industrial heat treatment. The study involved the assessment of the severity of quenching and wetting behaviour of conventional and vegetable oil quench media. Quench severities of sunflower, coconut and palm oils were found to be greater than mineral oil. The quench severity of aqueous media is greater than oil media although their wettability is poor as indicated by their higher contact angles. A dimensionless contact angle parameter defined in this work is found to be a better parameter to compare the wetting behaviour with heat transfer.  相似文献   

2.
This work is focused on the experimental study of the performance of a heat exchanger designed for aero engine applications. The heat exchanger is operating as a heat recuperator by taking advantage of the thermal energy of the exhaust gas of the aero engine in order to obtain a better combustion with less pollutant emissions. The experimental study has been performed in a wind-tunnel by taking detailed flow and thermal measurements on a 1:1 model of the heat exchanger under various operating conditions described by the hot gas inlet mass flow rates and its spatial direction (different angles of attack and inclination) towards the heat exchanger. The hot gas has been modeled with preheated air. Six sets of measurements have been carried-out for different hot gas inlet and outlet temperatures, including also isothermal measurements without any heat transfer in order to have a reference point for the pressure drop of the flow through the device. The experimental results showed that the effect of the angle of attack on the pressure drop is significant while the effect of the angle of inclination is negligible. Additionally, the pressure drop through the heat exchanger is greatly affected by the heat transfer.  相似文献   

3.
Heat exchangers are used in various applications. In a typical CFD approach, where it is necessary to model the flow in a device with a heat exchanger, a first step can be the construction of a very detailed mesh modeling each flow passage inside the device. However, this approach can lead to very fine grids with high demands of CPU power and memory requirements. In order to overcome this problem, the presence of the heat exchanger can be modeled as a porous medium having the same thermal and flow behaviour as the original device. In this work, a generalized porous medium model was developed for a heat exchanger designed to be used as a heat recuperator for an aero engine. For the porosity model a modified anisotropic formulation of the Darcy–Forchheimer pressure drop law was introduced together with a heat transfer model in the form of a Nusselt–Reynolds–Prandtl numbers correlation. For the derivation of the pressure drop and heat transfer coefficients various data from experimental measurements were used. In order to assess the performance of the proposed model, CFD computations were performed. For all the examined cases, the CFD results were in close agreement with the experimental data and thus, the developed porosity model could sufficiently, describe the macroscopic behaviour of the heat exchanger.  相似文献   

4.
设计独立的换热器,降低水下工作柴油机中高负荷工况的排气温度.运用SolidWorks建立换热器模型并进行仿真分析,研究圆柱形换热器4种换热管布置方式对换热器温降与压损的影响.分析结果表明:设计的换热器可将排气温度由550.00℃降低到161.94℃,废气在换热器中的压损为5.95 kPa,降温效果和压损均满足相关工程要...  相似文献   

5.
A numerical study has been carried out to analyze the unsteady three-dimensional flow and heat transfer in a parallel-plate channel heat exchanger with in-line arrays of periodically mounted rectangular cylinders (pins) at various Reynolds number and geometrical configurations. The three-dimensional unsteady Navier-Stokes and energy equations are solved using higher order temporal and spatial discretizations. The simulations have been carried out for a range of Reynolds number based on cylinder width (180-600) and a Prandtl number of 6.99 (corresponding to water). Conjugate heat transfer calculations have been employed to account for the conduction in the solid cylinder and convection in the fluid. The thermal performance factor (TPF) increases significantly when the flow becomes unsteady. The choice of aspect ratio of the cylinders is judged by their relative increase in friction factor and heat transfer at transitional Reynolds number. The TPF is found to increase with the increase in pitch of the cylinders. The increase in channel height enhances the TPF though the heat transfer decreases at higher channel height.  相似文献   

6.
In recent years the requirement for reduction of energy consumption has been increasing to solve the problems of global warming and the shortage of petroleum resources. A latent heat recovery type heat exchanger is one of the effective methods of improving thermal efficiency by recovering latent heat. This paper described the heat transfer and pressure loss characteristics of a latent heat recovery type heat exchanger having a wing fin (fin pitch: 4 mm, fin length: 65 mm). These were clarified by measuring the exchange heat quantity, the pressure loss of heat exchanger, and the heat transfer coefficient between outer fin surface and gas. The effects of condensate behavior in the fins on heat transfer and pressure loss characteristics were clarified. Furthermore, the equations for predicting the heat transfer coefficient and pressure loss which are necessary in the design of the heat exchanger were proposed. ©2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(4): 215–229, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20154  相似文献   

7.
A test plant has been constructed for measurements of local heat-transfer coefficients and frictional pressure drops on the shell side of spiral-wound LNG heat exchangers. Measurements have been performed with gas flow, liquid film flow and two-phase shear flow. This paper focuses on the measurements and the results from the gas flow measurements. 221 gas flow heat-transfer measurements and 80 gas flow frictional pressure drop measurements have been performed at a Re-number range of 5000-170 000 with nitrogen, methane, ethane and methane/ethane mixture as test fluids.  相似文献   

8.
. oas-sous tw con~ tot ed trsmeans of meving Pactri tal bo bo widsly nsed intw ot wet boal. ~ or not od,mp Of gaS aDd solid waSte hot and otherinMal tw. W bas the adVantage Of bo bedpem tw, cope edgUhaOn anu easr cootOf -al reshaCe tim diStritw (RTD in hedexChaDg over the fhadhal bo mfor. HOWeVer uP tohaX the -- on the hod transfer in thes kindOf bea tw are od feW to our We.McGa wt a two -ed hamch COnSistw Of pe -- l,], in which themoha ~ We was divital into man diotch an0 the bo o…  相似文献   

9.
Modern automotive diesel engines are so energy efficient that they are heating up slowly and tend to run rather cold at subzero temperatures. The problem is especially severe in mail delivery operations where the average speed is low and the drive cycle includes plenty of idling. The problem is typically solved by adding a diesel fuelled additional engine heater which is used for the preheating of the engine during cold start and additional heating of the engine if the coolant temperature falls below a thermostat set point during the drive cycle. However, this additional heater may drastically increase the total fuel consumption and exhaust gas emissions of the vehicle. In this study the additional heater was replaced by a combination of exhaust gas heat recovery system and latent heat accumulator for thermal energy storage. The system was evaluated on a laboratory dynamometer using a simulated drive cycle and in field testing in the city of Oulu (65°N), Finland in February 2009.  相似文献   

10.
文章针对日光温室环境下土壤空气换热器的换热特性进行了研究。首先通过监测土壤空气换热器沿程空气温度的全天变化,分析了试验工况下土壤空气换热器的动态换热过程及系统性能变化规律。研究结果表明,在试验工况下,土壤空气换热器系统的性能系数(COP)可高达24.1。在此基础上,通过建立土壤空气换热器的非稳态换热模型,模拟研究不同的入口风速对土壤空气换热器换热性能的影响。研究结果表明,当换热管入口空气温度相同时,随着入口风速的增加,土壤空气换热器进出口空气温度差逐渐减小,出口处空气温度与土壤温度差值逐渐增大,这意味着土壤空气换热器有效换热长度逐渐变长。在此过程中,土壤空气换热器系统的换热量和COP随着入口空气风速的增加呈现出先增后减的规律。通过模拟结果可知,当入口风速达到5.5 m/s时,土壤空气换热器系统的换热量与COP均达到最大值。  相似文献   

11.
The purpose of this work is to investigate gas to liquid heat transfer performance of concentric tube heat exchanger with twisted tape inserted corrugated tube and to evaluate its impact on engine performance and economics through heat recovery from the exhaust of a heavy duty diesel generator (120 ekW rated load). This type of heat exchanger is expected to be inexpensive to install and effective in heat transfer and to have minimal effect on exhaust emissions of diesel engines. This type of heat exchanger has been investigated for liquid to liquid heat transfer at low Reynolds number by few investigators, but not for gas to liquid heat transfer. In this paper, a detail of heat transfer performance is investigated through simulations using computer software. The software is first justified by comparing the simulation results with the developed renowned correlations. Simulations are then conducted for concentric tube heat exchanger with different twisted tape configuration for optimal design. The results show that the enhancement in the rate of heat transfer in annularly corrugated tube heat exchanger with twisted tape is about 235.3% and 67.26% when compared with the plain tube and annularly corrugated tube heat exchangers without twisted tapes respectively. Based on optimal results, for a 120 ekW diesel generator, the application of corrugated tube with twisted tape concentric tube heat exchanger can save 2250 gal of fuel, $11,330 of fuel cost annually and expected payback of 1 month. In addition, saving in heating fuel also reduces in CO2 emission by 23 metric tons a year.  相似文献   

12.
For the purpose of heat transfer enhancement, the configuration of a shell-and-tube heat exchanger was improved through the installation of sealers in the shell-side. The gaps between the baffle plates and shell is blocked by the sealers, which effectively decreases the short-circuit flow in the shell-side. The results of heat transfer experiments show that the shell-side heat transfer coefficient of the improved heat exchanger increased by 18.2–25.5%, the overall coefficient of heat transfer increased by 15.6–19.7%, and the exergy efficiency increased by 12.9–14.1%. Pressure losses increased by 44.6–48.8% with the sealer installation, but the increment of required pump power can be neglected compared with the increment of heat flux. The heat transfer performance of the improved heat exchanger is intensified, which is an obvious benefit to the optimizing of heat exchanger design for energy conservation.  相似文献   

13.
随着强化传热技术的研究发展,各种形式的涡发生器的强化传热效果日益受到国内外的重视。文章比较全面地介绍了近年来国内外关于通道内布置各类涡发生器时的强化传热研究状况,并提出了有待进一步开展的研究内容。  相似文献   

14.
The paper presents the results from the analysis of an experimental investigation with the aim to provide insight to the cyclic, instantaneous heat transfer phenomena occurring in both the cylinder head and exhaust manifold wall surfaces of a direct injection (DI), air-cooled diesel engine. The mechanism of cyclic heat transfer is investigated during engine transient events, viz. after a sudden change in engine speed and/or load, both for the combustion chamber and exhaust manifold surfaces. These results are then compared with relevant experimental data from steady state operation which in the present case are used as reference helping to reveal any potential influences of each transient event on cyclic heat transfer. The experimental installation allowed both long- and short-term signal types to be recorded on a common time reference base during the transient event. Processing of experimental data was accomplished using a modified version of one-dimensional heat conduction theory with Fourier analysis, capable to cater for the special characteristics of transient engine operation. Based on this model, the evolution of local surface heat flux during a transient event was calculated. Two engine transient events are examined, which present a key difference in the way the load and speed changes are imposed on each one of them. From the analysis of experimental results it is confirmed that each thermal transient event consists of two distinguished phases the “thermodynamic” and the “structural” one which are appropriately configured and analyzed. In the case of a severe variation, in the first 20 cycles after the beginning of the transient event, the wall surface temperature amplitude on cylinder head was almost three times higher than the one observed at the “normal” temperature oscillations occurring during the steady state operation. At the same time, peak pressure values in the same cycles are increased by almost 15% above their corresponding values at the final steady state. The same phenomena are valid for the exhaust manifold surfaces but on a moderated scale.  相似文献   

15.
Heat transfer enhancement of multi-walled carbon natube(MWNT)/water nanofluid in a horizontal shell and tube heat exchanger has been studied experimentally. Carbon nanotubes were synthesized by the use of catalytic chemical vapor deposition (CCVD) method over Co–Mo/MgO nanocatalyst. Obtained MWNTs were purified using a three stage method. COOH functional groups were inserted for making the nanotubes hydrophilic and increasing the stability of the nanofluid. The results indicate that heat transfer enhances in the presence of multi-walled nanotubes in comparison with the base fluid.  相似文献   

16.
纪律  李斌 《节能》2010,29(11):29-32
同时对普通翅片管和带有两个短肋的翅片管在均匀流场中、不同雷诺数下进行了流场和传热的数值模拟,分析了带有短肋的翅片管强化传热的机理。结果表明,由于翅片上带有的短肋和短肋后面的开孔,减少了翅片管管后流动的死滞区,提高了局部地区流体的流速,增加了扰动,从而起到了强化传热的作用。取入口雷诺数为20000时,加装短肋后可使总传热量增加5.1%,平均表面传热系数增加23.56%。随着雷诺数的增加,总换热量增加,强化传热效果也增强。  相似文献   

17.
板式换热器传热和阻力特性的实验研究   总被引:2,自引:0,他引:2  
利用搭建的液-液型板式换热器试验平台,根据实验数据运用定性雷诺数法拟合出传热关联式,找出Nu与摩擦因子f之间的通用关系式,为板式换热器的设计计算提供了依据。运用传热量与功率的消耗比来评价板式换热器的性能,找出了影响其性能的主要因素,进一步澄清了单纯依靠提高流速来增加传热性能是不经济的。  相似文献   

18.
空调系统排风热回收换热器的试验研究   总被引:1,自引:0,他引:1  
对用于回收空调系统余热的通风换热器进行了试验研究。在冬季工况下对其进行了性能测试。试验结果表明,该换热器具有换热效率高、阻力小的特点;在风速为2.6m/s的工况下,其换热效率达到64.5%。  相似文献   

19.
The purpose of this study is to suggest a general method for the optimal design of a plate heat exchanger (PHE) with undulated surfaces that complies with the principles of sustainability. A previously validated CFD code is employed to predict the heat transfer rate and pressure drop in this type of equipment. The computational model is a three-dimensional narrow channel with angled triangular undulations in a herringbone pattern, whose blockage ratio, channel aspect ratio, corrugation aspect ratio, angle of attack and Reynolds number are used as design variables. To limit the number of simulations needed, the Box–Behnken technique is employed. An objective function that linearly combines heat transfer augmentation with friction losses, using a weighting factor that accounts for the cost of energy, is employed for the optimization procedure using response surface methodology (RSM). New correlations are provided for predicting Nusselt number and friction factor in such PHEs. The results are in very good agreement with published data. Finally, optimal design specifications are suggested for a range of Re for two values of the weighting factor.  相似文献   

20.
对不同管间距的垂直U型地埋管进行了夏季工况连续实验,比对单U地埋管换热器不同管间距下的单位井深换热量、管群内土壤温度变化和系统运行情况,结果表明,管间距越大,单U换热器和土壤之间换热效果越好,管群内的热干扰越弱;管间距过小,系统内换热器的换热情况将恶化,导致不能长期稳定运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号