首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report the heat and fluid flow characteristics of counterflow heat exchangers with tree-shaped line-to-line flow channels. The flow structures of the hot and cold sides are sequences of point-to-line trees that alternate with upside-down trees. The paper shows under what conditions the tree vascularization offers greater heat flow access than corresponding conventional designs with parallel single-scale channels. The analytical part is based on assuming fully developed laminar flow in every channel and negligible longitudinal conduction in the solid. The numerical part consists of simulations of three-dimensional convection coupled with conduction in the solid. It is shown that tree vascularization offers greater heat flow access (smaller global thermal resistance) than parallel channels when the number of pairing levels increases and the available pumping power or pressure drop is specified. When the solid thermal conductivity increases, the heat transfer effectiveness decreases because of the effect of longitudinal heat conduction. The nonuniformity in fluid outlet temperature becomes more pronounced when the number of pairing levels increases and the pumping power (or pressure drop number) increases. The nonuniformity in outlet fluid temperature decreases when the solid thermal conductivity increases.  相似文献   

2.
This work uses a thermal non-equilibrium model to study the free convection boundary layer flow driven by temperature gradients near a permeable horizontal cylinder of elliptic cross-section with constant wall temperature in a fluid-saturated porous medium. A coordinate transformation is used to obtain the nonsimilar boundary layer equations. The transformed boundary layer equations are then solved by the cubic spline collocation method. Results for the local Nusselt numbers are presented as functions of the porosity scaled thermal conductivity ratio, the heat transfer coefficient between solid and fluid phases, the transpiration parameter, and the aspect ratio when the major axis of the elliptical cylinder is vertical (slender orientation) and horizontal (blunt orientation). An increase in the porosity scaled thermal conductivity ratio or the heat transfer coefficient between the solid and fluid phases increases the heat transfer rates. Moreover, the use of suction (positive transpiration parameter) tends to increase the heat transfer rates between the porous medium and the surface.  相似文献   

3.
Convective heat transfer coefficient and friction factor of nanofluids in rectangular microchannels were measured. An integrated microsystem consisting of a single microchannel on one side, and two localized heaters and five polysilicon temperature sensors along the channel on the other side were fabricated. Aluminum dioxide (Al2O3) with diameter of 170 nm nanofluids with various particle volume fractions were used in experiments to investigate the effect of the volume fraction of the nanoparticles to the convective heat transfer and fluid flow in microchannels. The convective heat transfer coefficient of the Al2O3 nanofluid in laminar flow regime was measured to be increased up to 32% compared to the distilled water at a volume fraction of 1.8 volume percent without major friction loss. The Nusselt number measured increases with increasing the Reynolds number in laminar flow regime. The measured Nusselt number which turned out to be less than 0.5 was successfully correlated with Reynolds number and Prandtl number based on the thermal conductivity of nanofluids.  相似文献   

4.
In this study, the numerical analysis of conjugate heat transfer of laminar flow in a functionally graded hollow cylinder (FGHC) made of metal/ceramic for a two‐dimensional fluid and wall conduction subject to Newton boundary condition is considered. The fluid and FGHC energy equations are coupled through the continuity of temperature and heat flux at the inner wall‐fluid interface while the outer surface is subject to convective heat transfer. The continuity, momentum, and energy equations of the fluid are discretized using the finite volume approach. The effects of fluid and functionally graded material parameters, such as volume fraction index, volume composition, time history, wall‐to‐fluid thermal diffusivity ratio, wall‐to‐fluid thermal conductivity ratio, Biot number, Peclet number, and Prandtl number are investigated on the temperature field in the FGHC. The result shows that on account of the inhomogeneity of the material property, the volume fraction index has a significant effect on the other parameters and the temperature variation along the thickness. The lower the volume fraction index, the higher the inner wall (metal side) temperature, and the temperature gradient along the thickness. However, except for the variation in the wall‐to‐fluid thermal conductivity ratio, the lower the volumetric fraction, the lower the outer wall (ceramic side) temperature distribution.  相似文献   

5.
A method is proposed for the evaluation of the interfacial conduction heat transfer coefficient in two-temperature macroscopic models of homogeneous fluid-saturated porous media. It is based on the numerical solutions of a microscopic model of unsteady conduction heat transfer in periodic unit cells, with different uniform initial temperatures of the fluid and solid. A novel formulation of the microscopic model in the fully developed regime is also proposed. Results for the variation of interfacial conduction Nusselt number with porosity, fluid–solid thermal conductivity ratio, and fluid–solid thermal diffusivity ratio are presented and discussed for four two-dimensional and two three-dimensional cases.  相似文献   

6.
The problem of conjugate heat transfer involving mixed convection laminar ascending flow of water in inclined circular tubes uniformly heated on their outer surface has been studied numerically using a unified formulation for the solid and fluid domains. The highly coupled governing equations were discretized using the control volume approach, and solved according to the SIMPLER algorithm. Results have clearly demonstrated that the conduction within the tube wall has an important influence on both the hydrodynamic and thermal fields. High wall thermal conductivity or large thickness reduces the temperature stratification within the fluid and intensifies the secondary motion, consisting of two symmetrical vortices. The effects of wall conduction are particularly significant for horizontal tubes for which the average Nusselt number is bounded by two limits corresponding to the cases of infinite wall thermal conductivity and zero wall thermal conductivity. For Gr = 2 × 105 these limits are 10.42 and 9.03, respectively. These effects are negligible for tubes inclined at 30° and for Grashof number below 3 × 104.  相似文献   

7.
Cooling technology of gas turbine blades,primarily ensured via internal forced convection,is aimed towards withdrawing thermal energy from the airfoil.To promote heat exchange,the walls of internal cooling passages are lined with repeated geometrical flow disturbance elements and surface non-uniformities.Raising the heat transfer at the expense of increased pressure loss;the goal is to obtain the highest possible cooling effectiveness at the lowest possible pressure drop penalty.The cooling channel heat transfer problem involves convection in the fluid domain and conduction in the solid.This coupled behavior is known as conjugate heat transfer.This experimental study models the effects of conduction coupling on convective heat transfer by applying iso-heat-flux boundary condition at the external side of a scaled serpentine passage.Investigations involve local temperature measurements performed by Infrared Thermography over flat and ribbed slab configurations.Nusselt number distributions along the wetted surface are obtained by means of heat flux distributions,computed from an energy balance within the metal domain.For the flat plate experiments,the effect of conjugate boundary condition on heat transfer is estimated to be in the order of 3%.In the ribbed channel case,the normalized Nusselt number distributions are compared with the basic flow features.Contrasting the findings with other conjugate and convective iso-heat-flux literature,a high degree of overall correlation is evident.  相似文献   

8.
Numerical study has been carried out on the laminar forced convection flow of nanofluids in a wide rectangular microchannel. The flow and heat transfer characteristics of gold and of single-walled carbon (SWCNT) nanofluids are investigated in order to find an efficient and cost-effective heat transfer fluid. The effects of nanoparticle volume concentration and of spherical and cylindrical particulate sizes on the conjugate heat transfer performance of the microchannel are reported. The effective thermal conductivity of a nanofluid is evaluated on the basis of particle sphericity by considering the volume and surface area of the nanoparticles. The average convective heat transfer coefficient increases with increase in Reynolds number and volume concentration. Moreover, sphericity-based thermal conductivity evaluation showed that increasing the length of the SWCNT nanoparticle has significant effect on the heat transfer performance, concluding that axial heat conduction dominates the radial heat conduction within the nanoparticle. The carbon nanofluid is identified as an optimized heat transfer fluid with better heat transfer characteristics in comparison with the gold nanofluid. It also reduces the cost of the working fluid. The variations in the interface temperature between solid and fluid regions are reported for nanofluids with different concentrations at different Reynolds numbers. The diameter and length of the SWCNT nanoparticle show a significant effect on heat transfer characteristics.  相似文献   

9.
《Applied Thermal Engineering》2007,27(5-6):862-868
A double-pipe helical heat exchanger was numerically studied to determine the effects of thermally dependent viscosity and non-Newtonian flows on heat transfer and pressure drop for laminar flow. Thermally dependent viscosities were found to have very little effect on the Nusselt number correlations for Newtonian fluids; however significant effects on the pressure drop in the heat exchanger were predicted. Changing the flow rate in the annulus can significantly affect the pressure drop in the inner tube, since the average viscosity of the fluid in the inner tube would change due to the change in the average temperature.The effects of non-Newtonian power law fluids on the heat transfer and the pressure drop were determined for laminar flow in the inner tube and in the annulus. The Nusselt number was correlated with the Péclet number for heat transfer in the inner tube. For the annulus, the Nusselt number was found to correlate best with the Péclet number and the curvature ratio. Pressure drop data were compared by using ratios of the pressure drop of the non-Newtonian fluid to a Newtonian fluid at identical mass flow rates and consistency indices.  相似文献   

10.
During the last several years, the increase in cooling power requirements for heat exchangers have led to an escalation in heat transfer studies being performed on the use of nanofluids as heat transfer fluids. However, limited effort has been attempted to relate and interpret these findings or the anomalies associated with them. The paper compiles test data from several studies conducted on different types of heat exchangers. In this review, a concentrated effort is spent to clarify the ambiguities regarding the effect of nanoparticle size on the nanofluid thermal conductivity and Nusselt number. Results show that the nanofluid thermal conductivity is not influenced by the nanoparticle size, but by the clustering of the particles themselves. The less compact the structure of the nanoparticle clustering is, the greater the enhancement in the nanofluid thermal conductivity is. Data were also compiled to interpret the relation between the nanofluid flow pattern, nanoparticles volume fraction in the base fluid, and the convective heat transfer. The results from the majority of the heat exchanger studies show an increase in the heat transfer coefficient with the increase in nanoparticle volume fraction. However, studies conducted on plate heat exchanges display some inconsistencies. In the majority of the heat exchanger studies with the exception of few, the decrease in the nanoparticle size is shown to result in an enhancement of the bulk fluid Nusselt number. Compiled test data also reveal that the effectiveness of the alumina nanoparticles is dependent on the flow pattern. The increase in the nanoparticles concentration is shown to result in an increase in the nanofluid heat transfer enhancement as the fluid is transitioning from laminar to turbulent flow. In general, the smaller the nanoparticle size is, the greater the enhancement in the fluid Nusselt number is.  相似文献   

11.
This work examines the natural convection heat transfer from a horizontal isothermal cylinder of elliptic cross section in a Newtonian fluid with temperature dependent internal heat generation. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are solved numerically applying cubic spline collocation method. Results for the local Nusselt number and the local skin-friction coefficient are presented as functions of eccentric angle for various values of heat generation parameters, Prandtl numbers and aspect ratios. Results show that both the heat transfer rate and skin friction of the elliptical cylinder with slender orientation are higher than the elliptical cylinder with blunt orientation. Moreover, an increase in the heat generation parameter for natural convection flow over an isothermal horizontal elliptic cylinder leads to a decrease in the heat transfer rate from the elliptical cylinder and an increase in the skin friction of the elliptical cylinder.  相似文献   

12.
Laminar heat transfer in a porous channel is numerically simulated with a two-energy equation model for conduction and convection. Macroscopic equations for continuity, momentum and energy transport for the fluid and solid phases are presented. The numerical methodology employed is based on the control volume approach with a boundary-fitted non-orthogonal coordinate system. Fully developed forced convection in a porous channel bounded by parallel plates is considered. Solutions for Nusselt numbers along the channel are presented for laminar flows. Results simulate the effects Reynolds number Re, porosity, particle size and solid-to-fluid thermal conductivity ratio on Nusselt sumber, Nu, which is defined for both the solid and fluid phases. High Re, low porosities, low particle diameters and low thermal conductivity ratios promote thermal equilibrium between phases leading to higher values of Nu.  相似文献   

13.
In this study, fully developed laminar flow and convective heat transfer in an internally finned tube heat exchanger are investigated numerically. The flow is assumed to be both hydrodynamically and thermally developed with uniform outside wall temperature. Parameters of the thickness, length, and number of fins and thermal conductivity ratio between fin and working fluid are varied to obtain the friction factor as well as Nusselt number. The results show that the heat transfer improves significantly if more fins are used; however, the pressure drop turns out to be large in this heat exchanger. In addition, it is found that the emergence of closed-loop isotherms between the areas of two neighboring fins leads to heat transfer enhancement in the internally finned tube. When the fin number is smaller than 14, there appears a maximum Nusselt number at about 0.8 of the dimensionless fin length. Finally, an experiment is conducted to verify the numerical results.  相似文献   

14.
In the elementary heat exchanger design theory, the longitudinal heat conduction through the heat transfer plate separating hot and cold fluid streams is neglected, and only the transverse heat conduction is taken into account for the conjugate heat transfer problem. In the cross-corrugated heat exchanger, the corrugated primary surface naturally leads to the highly non-uniform convective heat transfer coefficient distribution on opposite sides of the plate. In such a case, the longitudinal heat conduction may play a significant role in the thermal coupling between high heat transfer regions located on opposite sides of the plate. In the present study CFD is used to perform a quantitative assessment of the thermal performance of a cross-corrugated heat exchanger including the longitudinal heat conduction effect for various design options such as different plate thickness and corrugation geometry for a typical operating condition. The longitudinal heat conduction effect is then predicted by the theoretical method using the ‘network-of-resistance’ in the wide range of the heat exchanger design space.  相似文献   

15.
Heat and fluid flow in microchannels of size (200μm × 200 μm, 5 cm long) of different substrate thicknesses (t = 100 μm–1000 μm) and different MEMS (Microelectromechanical Systems) materials (Polyimide, Silica Glass, Quartz, Steel, Silicon, Copper) was studied to observe the effects of thermal conductivity and substrate thickness on convective heat transfer in laminar internal flows.The results of the model were first validated by the theoretical results recommended by standard forced convection problem with H1 (Constant heat flux boundary condition) condition before the results from the actual microchannel configurations were obtained. Thereafter, general Nusselt number results were obtained from the models of many microchannel configurations based on the commercial package COMSOL MULTIPHYSICS® 3.4 and were discussed on both local and average basis.A general Nusselt number correlation for fully developed laminar flow was developed as a function of two dimensionless parameters, namely Bi, Biot number and relative conductivity k1, to take the conduction effects of the solid substrate on heat transfer into account. It was also demonstrated when the commonly used assumption of constant heat flux boundary (H1) condition is applicable in heat and fluid flow analysis in microfluidic systems. For this, a new dimensionless parameter was employed. A value of 1.651 for this suggested dimensionless parameter (Bi0.04k1?0.24) corresponds to 95% of the Nusselt number associated with the constant heat flux boundary condition so that it could be set as a boundary for the applicability of constant heat flux boundary (H1) condition in microfluidic systems involving heat transfer.  相似文献   

16.
This paper reports a numerical study of the laminar conjugate natural convection heat transfer with and without the interaction of the surface radiation in a horizontal cylindrical annulus formed between an inner heat generating solid circular cylinder and an outer isothermal circular boundary. Numerical solutions are obtained by solving the governing equations with a pressure correction method on a collocated (non-staggered) mesh. Steady-state results are presented for the flow and temperature distributions and Nusselt numbers for the heat generation based Grashof number ranging from , solid-to-fluid thermal conductivity ratios of 1, 5, 10, 50 and 100, radius ratios of 0.226 and 0.452 and surface emissivities of 0–0.8 with air as the working medium. It is observed that surface radiation reduces the convective heat transfer in the annulus compared to the pure natural convection case and enhances the overall Nusselt number.  相似文献   

17.
The objective of this study is to investigate unsteady conjugate natural convection in a porous cavity sandwiched by finite conductive walls considering time-periodic boundary conditions and local thermal non-equilibrium. The top and bottom boundaries are assumed to be isolated and the continuity of temperature and heat transfer are considered in interface boundaries. The effect of varying a plethora of parameters such as Rayleigh number, Thermal conductivity ratio, wall thickness, and non-dimensional frequency on the streamlines, isotherms, and Nusselt number has been studied. It is shown that, apart from non-dimensional frequency and wall thickness, the amplitude of periodic fluid Nusselt number is an increasing function of all aforementioned parameters. Furthermore, aside from Rayleigh number and heat transfer coefficient, the behavior of the solid Nusselt number is the same as fluid Nusselt number. Eventually, the time-averaged Nusselt number and heat transfer through the vertical walls for different values of non-dimensional frequencies are calculated.  相似文献   

18.
Di Liu  Fu-Yun Zhao  Han-Qing Wang 《Energy》2011,36(5):2867-2882
Simultaneous transport of heat and moisture by conjugate natural convection in a partial enclosure with a solid wall is investigated numerically. Moist air motions are driven by the external temperature and concentration differences imposed across enclosures with different ambient moisture conditions. The Prandtl number and Schmidt number used are 0.7 and 0.6, respectively. The fluid, heat and moisture transports through the cavity and solid wall are, respectively, analyzed using the streamlines, heatlines and masslines, and the heat and mass transfer potentials are also explained by the variations of overall Nusselt and Sherwood numbers. The numerical simulations presented here span a wide range of the main parameters (heat and mass diffusion coefficient ratios, solid wall thickness and thermal Rayleigh numbers) in the domain of aiding and opposing buoyancy-driven flows. It is shown that the heat transfer potential, mass transfer potential, and volume flow rate can be promoted or inhibited, depending strongly on the wall materials and size, thermal and moisture Rayleigh numbers.  相似文献   

19.
The two equation numerical model has been applied for parallel flow double-pipe heat exchanger filled with open cell metal foams. The model fully considered solid–fluid conjugated heat transfer process coupling heat conduction and convection in open cell metal foam solid matrix, interface wall and fluid in both inner and annular space in heat exchanger. The non-Darcy effect and the wall thickness are also taken into account. The interface wall heat flux distribution along the axial direction is predicted. The numerical model is firstly verified and then the influences of solid heat conductivity, metal foam porosity, pore density, relative heat conductivity and inner tube radius of the heat exchanger on dimensionless temperature distribution and heat transfer performance of heat exchanger are numerically studied. It is revealed that the proposed numerical model can effectively display the real physical heat transfer process in the double pipe heat exchanger. It is expected to provide useful information for the design of metal foam filled heat exchanger.  相似文献   

20.
Heat transfer characteristics of Fe2O3/water and Fe2O3/EG nanofluids were measured in a shell and tube heat exchanger under laminar to turbulent flow condition. In the shell and tube heat exchanger, water and ethylene glycol-based Fe2O3 nanofluids with 0.02%, 0.04%, 0.06% and 0.08% volume fractions were used as working fluids for different flow rates of nanofluids. The effects of Reynold's number, volume concentration of suspended nanoparticles and different base fluids on the heat transfer characteristics were investigated. Based on the results, adding nanoparticles to the base fluid causes a significant enhancement of the heat transfer characteristics and thermal conductivity. This enhancement was investigated with regard to various factors; concentration of nanoparticles, types of base fluids, sonication time and temperature of fluids. In this paper, the effect of Fe2O3 nanoparticles on the thermal conductivity of base fluids like ethylene glycol and water was studied. The thermal conductivity measurement was made for different concentrations and temperatures. As the concentration of the nanoparticles increased, there was a significant enhancement in thermal conductivity and overall heat transfer due to more interaction between particles. It was also observed that there was an improvement in the thermal conductivity of the base fluid as the temperature increased. The measurements also showed that the pressure drop of nanofluid was higher than that of the base fluid in a turbulent flow regime. However, there was no significant increase in pressure drop at laminar flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号