首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The mannitol-1-phosphate dehydrogenase (M1PDH) (EC 1.1.1.17) from Streptococcus mutans strain FA-1 was purified to approximately a 425-fold increase in specific activity with a 29% recovery of total enzyme units, using a combination of (i) streptomycin sulfate and ammonium sulfate precipitation and (ii) diethyl-aminoethyl-cellulose (DE-52), agarose A 0.5M, and agarose-nicotinamide adenine dinucleotide (NAD) affinity column chromatography. Polyacrylamide gel electrophoresis of the purified enzyme preparation showed a single protein component that coincided with a band of M1PDH activity. The enzyme had a molecular weight of approximately 45,000 and was stable for long periods of time when stored at -80 degrees C in the presence of beta-mercaptoethanol. Its activity was not affected by mono- or divalent cations, and high concentrations of ethylenedia-minetetraacetic acid were not inhibitory. The M1PDH catalyzed both the NAD-dependent oxidation of mannitol-1-phosphate and the reduced NAD (NADH)-dependent reduction of fructose-6-phosphate. The forward reaction was highly specific for mannitol-1-phosphate and NAD, whereas the reverse reaction was highly specific for NADH and fructose-6-phosphate. The K(m) values for mannitol-1-phosphate and NAD were 0.15 and 0.066 mM, respectively, and the K(m) values for fructose-6-phosphate and NADH were 1.66 and 0.016 mM, respectively. The forward and reverse reactions catalyzed by the M1PDH from S. mutans appeared to be under cellular control. Both adenosine 5'-triphosphate and fructose-6-phosphate were negative effectors of the forward reaction, whereas adenosine 5'-diphosphate served as a negative effector of the reverse reaction catalyzed by the enzyme.  相似文献   

2.
The intracellular redox potential, which is determined by the level of oxidants and reductants, has been shown to play an important role in the regulation of cell growth. The principal intracellular reductant is NADPH, which is mainly produced by the pentose phosphate pathway through the actions of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, and by 6-phosphogluconate dehydrogenase. Previous research has suggested that an increase in G6PD activity is important for cell growth. In this article, we suggest that G6PD activity plays a critical role in cell growth by providing NADPH for redox regulation. The results show the following: 1) inhibition of G6PD activity abrogated growth factor stimulation of [3H]thymidine incorporation in all cell lines tested; 2) overexpression of G6PD stimulated cell growth, as measured by an increase in [3H]thymidine incorporations as compared with cells transfected with vector alone; 3) inhibition of G6PD caused cells to be more susceptible to the growth inhibitory effects of H2O2; 4) inhibition of G6PD led to a 30-40% decrease in the NADPH/NADP ratio; and 5) inhibition of G6PD inhibited cell anchorage and significantly decreased the growth-related stimulation of tyrosine phosphorylation.  相似文献   

3.
The ability of yeast strains to perform both alcoholic and malolactic fermentation in winemaking was studied with a view to achieving a better control of malolactic fermentation in enology. The malolactic gene of Lactococcus lactis (mleS) was expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe. The heterologous protein is expressed at a high level in cell extracts of a S. cerevisiae strain expressing the gene mleS under the control of the alcohol dehydrogenase (ADH1) promoter on a multicopy plasmid. Malolactic enzyme specific activity is three times higher than in L. lactis extracts. Saccharomyces cerevisiae expressing the malolactic enzyme produces significant amounts of L-lactate during fermentation on glucose-rich medium in the presence of malic acid. Isotopic filiation was used to demonstrate that 75% of the L-lactate produced originates from endogenous L-malate and 25% from exogenous L-malate. Moreover, although a small amount of exogenous L-malate was degraded by S. cerevisiae transformed or not by mleS, all the exogenous degraded L-malate was converted into L-lactate via a malolactic reaction in the recombinant strain, providing evidence for very efficient competition of malolactic enzyme with the endogenous malic acid pathways. These results indicate that the sole limiting step for S. cerevisiae in achieving malolactic fermentation is in malate transport. This was confirmed using a different model, S. pombe, which efficiently degrades L-malate. Total malolactic fermentation was obtained in this strain, with most of the L-malate converted into L-lactate and CO2. Moreover, L-malate was used preferentially by the malolactic enzyme in this strain also.  相似文献   

4.
Hormone- and growth factor-stimulated NADH oxidase of the mammalian plasma membrane is thought to be involved in the control of normal cell proliferation. The aim of this study was to determine the effect of the naturally occurring quinone analogue capsaicin (8-methyl-N-vanillyl-6-noneamide) on the NADH oxidase activity of plasma membranes and cell growth of human primary melanocytes, the A-375 and SK-MEL-28 human melanoma cell cultures. NADH oxidase activity was inhibited preferentially in the A-375 melanoma cells but not in the primary melanocytes, by capsaicin. Inhibition of growth and the NADH oxidase by capsaicin could be induced in resistant SK-MEL-28 melanoma cells by co-administration of capsaicin with t-butyl hydroperoxide, a mild oxidising agent. Death of the inhibited cells was accompanied by nuclear changes suggestive of apoptosis. With B16 mouse melanoma, capsaicin inhibited both the NADH oxidase activity and growth in culture. Growth of B16 melanoma, transplanted in C57BL/6 mice, was significantly inhibited by capsaicin injected directly into the tumour site when co-administered with t-butyl hydroperoxide. The findings correlate the inhibition of cell surface NADH oxidase activity with inhibition of growth and capsaicin-induced apoptosis, and also suggest that the extent of inhibition may relate to the oxidation state of the plasma membrane.  相似文献   

5.
During batch growth of Lactococcus lactis subsp. lactis NCDO 2118 on various sugars, the shift from homolactic to mixed-acid metabolism was directly dependent on the sugar consumption rate. This orientation of pyruvate metabolism was related to the flux-controlling activity of glyceraldehyde-3-phosphate dehydrogenase under conditions of high glycolytic flux on glucose due to the NADH/NAD+ ratio. The flux limitation at the level of glyceraldehyde-3-phosphate dehydrogenase led to an increase in the pool concentrations of both glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate and inhibition of pyruvate formate lyase activity. Under such conditions, metabolism was homolactic. Lactose and to a lesser extent galactose supported less rapid growth, with a diminished flux through glycolysis, and a lower NADH/NAD+ ratio. Under such conditions, the major pathway bottleneck was most probably at the level of sugar transport rather than glyceraldehyde-3-phosphate dehydrogenase. Consequently, the pool concentrations of phosphorylated glycolytic intermediates upstream of glyceraldehyde-3-phosphate dehydrogenase decreased. However, the intracellular concentration of fructose-1,6-bisphosphate remained sufficiently high to ensure full activation of lactate dehydrogenase and had no in vivo role in controlling pyruvate metabolism, contrary to the generally accepted opinion. Regulation of pyruvate formate lyase activity by triose phosphates was relaxed, and mixed-acid fermentation occurred (no significant production of lactate on lactose) due mostly to the strong inhibition of lactate dehydrogenase by the in vivo NADH/NAD+ ratio.  相似文献   

6.
The mitochondrial electron-transport chain present in the procyclic and long slender bloodstream forms of Trypanosoma brucei brucei was investigated by means of several experimental approaches. The oxidation of proline, glycerol and glucose in procyclic cells was inhibited 80-90% by antimycin A or cyanide, 15-19% by salicylhydroxamic acid, and 30-35% by rotenone. Cytochrom-c-reductase activity, with proline or glycerol 3-phosphate as substrate, in a mitochondrial fraction isolated from these cells was inhibited by antimycin and rotenone, but not by malonate, while cytochrome-c-reductase activity with succinate as substrate was inhibited by antimycin A and malonate, but not by rotenone. In addition, the reduction of dichloroindophenol by NADH was inhibited by rotenone but not by malonate, which suggests that rotenone-sensitive NADH dehydrogenase (complex I) is present in these mitochondria. The presence of three subunits of NADH dehydrogenase was observed in immunoblots of mitochondrial proteins with specific antibodies raised against peptides corresponding to predicted antigenic regions of these proteins, which provides further evidence for the presence of NADH dehydrogenase. In long slender bloodstream forms, the oxidation of glucose or glycerol was inhibited 100% by salicyhydroxamic acid, unaffected by cyanide or antimycin A, and inhibited 40% or 75%, respectively, by rotenone, which suggests that NADH dehydrogenase is present in these cells. In a mitochondrial fraction isolated from the bloodstream forms, oxygen uptake with glycerol 3-phosphate as substrate was inhibited 65% by rotenone. Low levels of rotenone-sensitive NADH-dependent reduction of dichloroindophenol and the presence of subunits 7 and 8 of NADH dehydrogenase provided additional evidence for the presence of NADH dehydrogenase in bloodstream forms of T. brucei.  相似文献   

7.
The morphologic and histochemical effects of 3-nitropropionic acid (NPA) were examined in cultured murine embryonal carcinoma cells. NPA caused a dose-dependent inhibition of cell proliferation of cultured murine embryonal carcinoma cells at concentrations above 1.05 mM and was lethal at 4.2 mM. Morphologic changes included gross swelling of the cells, swelling of mitochondria and accumulation of organellar debris within the cytoplasm. NPA inhibited the activity of succinate dehydrogenase but not of malate, isocitrate or glucose-6-phosphate dehydrogenases, resulting in a decrease in intracellular ATP. Although succinate dehydrogenase activity was decreased by NPA, propionic acid and its mercapto-, 2-chloro-, and 3-chloro- derivates did not affect enzyme activity. 3-Nitropropanol also inhibited succinate dehydrogenase but only at a much higher concentration than was required with NPA. The results provide evidence that cytotoxicity caused by NPA results from inhibition of succinate dehydrogenase activity leading to depression of ATP synthesis. Loss of cellular integrity is probably a direct consequence of failure of energy-dependent cell homeostatic mechanisms such as the plasma membrane Na+/K+ pump, resulting in swelling and ultimately lysis of the cell.  相似文献   

8.
The effect of inhibition of the malate-aspartate shuttle on the cytoplasmic NADH/NAD ratio and NADH redox state and its corresponding effects on mitochondrial energetics in vascular smooth muscle were examined. Incubation of porcine carotid arteries with 0. 4 mmol amino-oxyacetic acid an inhibitor of glutamate-oxaloacetate transaminase and, hence the malate-aspartate shuttle, inhibited O2 consumption by 21%, decreased the content of phosphocreatine and inhibited activity of the tricarboxylic acid cycle. The rate of glycolysis and lactate production was increased but glucose oxidation was inhibited. These effects of amino-oxyacetic acid were accompanied by evidence of inhibition of the malate-aspartate shuttle and elevation in the cytoplasmic redox potential and NADH/NAD ratio as indicated by elevation of the concentration ratios of the lactate/pyruvate and glycerol-3-phosphate/dihydroxyacetone phosphate metabolite redox couples. Addition of the fatty acid octanoate normalized the adverse energetic effects of malate-aspartate shuttle inhibition. It is concluded that the malate-aspartate shuttle is a primary mode of clearance of NADH reducing equivalents from the cytoplasm in vascular smooth muscle. Glucose oxidation and lactate production are influenced by the activity of the shuttle. The results support the hypothesis that an increased cytoplasmic NADH redox potential impairs mitochondrial energy metabolism.  相似文献   

9.
A simple, rapid enzymatic assay for the determination of inorganic pyrophosphate in tissue and plasma has been developed using the enzyme pyrophosphate--fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90) which was purified from extracts of Propionibacterium shermanii. The enzyme phosphorylates fructose-6-phosphate to produce fructose-1,6-bisphosphate using inorganic pyrophosphate as the phosphate donor. The utilization of inorganic pyrophosphate is measured by coupling the production of fructose-1,6-bisphosphate with the oxidation of NADH using fructose-bisphosphate aldolase (EC 4.1.2.13), triosephosphate isomerase (EC 5.3.1.1), and glycerol-3-phosphate dehydrogenase (NAD+)(EC 1.1.1.8). The assay is completed in less than 5 min and is not affected by any of the components of tissue or plasma extracts. The recovery of pyrophosphate added to frozen tissue powder was 97 +/- 1% (n = 4). In this assay the change in absorbance is linearly related to the concentration of inorganic pyrophosphate over the curvette concentration range of 0.1 microM to 0.1 mM.  相似文献   

10.
The culture conditions which are able to support the differentiation of bovine intramuscular (i.m.) stromal-vascular (S-V) cells into adipocytes were investigated. Bovine i. m. S-V cells were able to undergo adipose conversion, assessed by emergence of lipid droplets and induction of glycerol-3-phosphate dehydrogenase (GPDH) activity, when treated with 0.25 microM dexamethasone and 0.5 mM 1-methyl-3-isobutylxanthine in a serum-deprived (0.1%) medium containing 850 nM insulin and 1 mM octanoate. Octanoate was essential for morphological differentiation and addition of 25 microM of cholesterol with octanoate induced higher GPDH activity. The differentiation of the cells was not observed in the medium containing 10% fetal calf serum which supported the cell proliferation of undifferentiated cells even after confluence. Similarly, both bovine brain extracts and muscle extracts inhibited the differentiation of S-V cells in the serum-deprived condition. These results suggest that the existence of lipids such as octanoate and the process of growth-arrest in preadipocytes and/or other cells are necessary for the differentiation of bovine S-V cells into adipocytes in culture.  相似文献   

11.
The activities of glucose-6-phosphate dehydrogenase (G-6-PD) (EC No. 1.1.1.49), 6-phosphogluconate dehydrogenase (PGD) (EC No. 1.1.1.44), and isocitrate dehydrogenase (ICD) (EC No. 1.1.1.42) from promastigotes of Leishmania donovani strain 3S grown at 25 C in modified Tobie's (mT) medium and from promastigotes of the 37 C-adapted substrain of this strain cultivated in the mT at 37 C were assayed at 25 and 37 C. At 25 C ICD from both the strain and the substrain had the highest, and PGD, the lowest activity; the activity of G-6-PD was intermediate, but much closer to that of ICD. Irrespective of the temperature of the assay, the activities of G-6-PD and ICD from the 37 C substrain were significantly higher than those of these enzymes from the parental strain; however, the activity of PGD from the 25 C strain was slightly higher than that of this dehydrogenase from the 37 C-adapted stock. No significant activity losses of G-6-PD and ICD from either the strain or the substrain were noted after incubation of the extracts in the presence of 0.25 M sucrose at 37 C for 2 hr. PGD was unstable in such extracts, but it could be rendered stable by the addition of 4 mM 6-phosphogluconate, G-6-PD was the least and ICD the most dependent on Mg2+ ions. In the 15-25 C range, the Q10 values of the enzymes from the 25 C strain were 2.83, 2.5 and 2.63 for G-6-PD, PGD, and ICD, respectively. These values for the respective enzymes in the 25-35 C range were 2.06, 1.67, and 1.62. The Q10 values of the enzymes from the 37 C substrain in the 15-25 C range were 2.06 for G-6-PD, 3.25 for PGD, and 2.77 for ICD; in the 25-35 C range, the corresponding values were 1.67, 1.46, and 1.83. Cultivation of the 37 C substrain at 25 C was accompanied by a drop in G-6-PD and ICD activities.  相似文献   

12.
Plasma membrane vesicles of HeLa cells are characterized by a drug-responsive oxidation of NADH. The NADH oxidation takes place in an argon or nitrogen atmosphere and in samples purged of oxygen. Direct assay of protein thiols by reaction with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB; Ellman's reagent), suggests that protein disulfides may be the natural electron acceptors for NADH oxidation by the plasma membrane vesicles. In the presence of NADH, protein disulfides of the membranes were reduced with a concomitant stoichiometric increase in protein thiols. The increase in protein thiols was inhibited in parallel to the inhibition of NADH oxidation by the antitumor sulfonylurea LY181984 with an EC50 of ca. 30 nM. LY 181984, with an EC50 of 30 nM, also inhibited a protein disulfide-thiol interchange activity based on the restoration of activity to inactive (scrambled) RNase and thiol oxidation. The findings suggest that thiol oxidation, NADH-dependent disulfide reduction (NADH oxidation), and protein disulfide-thiol interchange in the absence of NADH all may be manifestations of the same sulfonylurea binding protein of the HeLa plasma membrane. A surface location of the thiols involved was demonstrated using detergents and the impermeant thiol reagent p-chloromercuriphenylsulfonic acid (PCMPS). The surface location precludes a physiological role of the protein in NADH oxidation. Rather, it may carry out some other role more closely related to a function in growth, such as protein disulfide-thiol interchange coupled to cell enlargement.  相似文献   

13.
The inhibitory effect and mechanism of action of nicotinamide to paraquat toxicity were studied in male Sprague-Dawley rats. Proteins of submitochondrial particles (SMP), especially of mol. wt. 25-30 kDa, in rat lungs were destroyed by paraquat radicals, and aggregated protein bands approximately 100 kDa were observed by polyacrylamide electrophoresis. The competitive inhibition effects were observed of nicotinamide on NADH oxidation by paraquat via SMP in rat lungs and the Ki was 9.3 mM. The inhibitory effects of nicotinamide on lipid peroxidation by paraquat with rat lung and liver SMP were verified. The times of occurrence of dyspnea and death in rats after paraquat exposure were delayed by nicotinamide administration. The activity of NADH: ubiquinone reaction of NADH:ubiquinone oxidoreductase (complex I) in rat lung was reduced 24 h after paraquat exposure, and was protected by nicotinamide. The activity of NADH:ferricyanide reaction of complex I was, however, reduced by administration not only of paraquat but also nicotinamide. These results imply that nicotinamide is inhibitory to paraquat toxicity. Nicotinamide, paraquat, and ferricyanide may react at overlapping sites on complex I.  相似文献   

14.
Three homozygous allelic forms (alpha GPDHf, alpha GPDHm and alpha GPDHs) of NAD+-dependent glycerol-3-phosphate dehydrogenase (sn-glycerol-3-phosphate:NAD+ 2-oxidoreductase, EC 1.1.1.8) of Drosophila virilis were purified to homogeneity and their biochemical properties were compared. Although these three forms were mutually distinguishable by electrophoresis, no significant differences were found with respect to pH optima for both forward and reverse reactions (pH 6.0--6.5 for dihydroxyacetone phosphate reduction; pH 10.0--10.5 for glycerol 3-phosphate oxidation), native and subunit molecular weights (65 000 for native form; 35 000--37 000 for subunit) and Michaelis constants for NADH, glycerol 3-phosphate and NAD+ (5.3--6.0 microM for NADH; 1.8--1.9 mM for glycerol 3-phosphate; 100--110 microM for NAD+). Significant differences among three forms were observed in thermostability at 35 degrees C and inhibition by excess of dihydroxyacetone phosphate. The alpha GPDHf form was found to be most thermolabile and the alpha GPDHs form most susceptible to the inhibition.  相似文献   

15.
Yeast cells defective in the GGS1 (FDP1/BYP1) gene are unable to adapt to fermentative metabolism. When glucose is added to derepressed ggs1 cells, growth is arrested due to an overloading of glycolysis with sugar phosphates which eventually leads to a depletion of phosphate in the cytosol. Ggs1 mutants lack all glucose-induced regulatory effects investigated so far. We reduced hexokinase activity in ggs1 strains by deleting the gene HXK2 encoding hexokinase PII. The double mutant ggs1 delta, hxk2 delta grew on glucose. This is in agreement with the idea that an inability of the ggs1 mutants to regulate the initiation of glycolysis causes the growth deficiency. However, the ggs1 delta, hxk2 delta double mutant still displayed a high level of glucose-6-phosphate as well as the rapid appearance of free intracellular glucose. This is consistent with our previous model suggesting an involvement of GGS1 in transport-associated sugar phosphorylation. Glucose induction of pyruvate decarboxylase, glucose-induced cAMP-signalling, glucose-induced inactivation of fructose-1,6-bisphosphatase, and glucose-induced activation of the potassium transport system, all deficient in ggs1 mutants, were restored by the deletion of HXK2. However, both the ggs1 delta and the ggs1 delta, hk2 delta mutant lack detectable trehalose and trehalose-6-phosphate synthase activity. Trehalose is undetectable even in ggs1 delta strains with strongly reduced activity of protein kinase A which normally causes a very high trehalose content. These data fit with the recent cloning of GGS1 as a subunit of the trehalose-6-phosphate synthase/phosphatase complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The activities of glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP oxidoreductase, G6PD), 6-phosphogluconate dehydrogenase (6-phospho-d-gluconate: NADP oxidoreductase, 6PGD), hexokinase (ATP:D-hexose 6-phosphotransferase, HK), lactic dehydrogeanse (L-lactate: NAD oxidoreductase, LDH) and aspirate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, Asp.T) were determined in red blood cells of 11 healthy individuals. The determinations were carried out on samples drawn every 4 h over a 24 h period. The activities of G6PD, 6PGD, LDH and Asp.T exhibited a semi-circadian rhythm, namely, two peaks of activity during 24 h while HK activity demonstrated a true circadian rhythm. In addition a polymorphism of the G6PD and LDH activity patterns was observed. The implications of a biological clock in enucleated cells are discussed.  相似文献   

18.
Activated sludge not containing significant numbers of denitrifying, polyphosphate [poly(P)]-accumulating bacteria was grown in a fill-and-draw system and exposed to alternating anaerobic and aerobic periods. During the aerobic period, poly(P) accumulated up to 100 mg of P x g of (dry) weight. When portions of the sludge were incubated anaerobically in the presence of acetate, 80 to 90% of the intracellular poly(P) was degraded and released as orthophosphate. Degradation of poly(P) was mainly catalyzed by the concerted action of polyphosphate:AMP phosphotransferase and adenylate kinase, resulting in ATP formation. In the presence of 0.3 mM nitric oxide (NO) in the liquid-phase release of phosphate, uptake of acetate, formation of poly-beta-hydroxybutyrate, utilization of glycogen, and formation of ATP were severely inhibited or completely abolished. In cell extracts of the sludge, adenylate kinase activity was completely inhibited by 0.15 mM NO. The nature of this inhibition was probably noncompetitive, similar to that with hog adenylate kinase. Activated sludge polyphosphate glucokinase was also completely inhibited by 0.15 mM NO. It is concluded that the inhibitory effect of NO on acetate-mediated phosphate release by the sludge used in this study is due to the inhibition of adenylate kinase in the phosphate-releasing organisms. The inhibitory effect of nitrate and nitrite on phosphate release is probably due to their conversion to NO. The lack of any inhibitory effect of NO on adenylate kinase of the poly(P)-accumulating Acinetobacter johnsonii 210A suggests that this type of organism is not involved in the enhanced biological phosphate removal by the sludges used.  相似文献   

19.
20.
The specific activity of carnitine palmitoyltransferase I (CPT-I) was similar in mitochondria isolated from rat Fao and human HepG2 hepatoma cells and from rat hepatocytes, but almost twofold higher in permeabilized hepatoma cells than in permeabilized hepatocytes. Short-term exposure to okadaic acid induced a ca. 80% stimulation of CPT-I in hepatocytes, whereas no significant response of the enzyme from hepatoma cells was evident. Thus, the high CPT-I activity displayed by hepatoma cells may be reached by hepatocytes upon challenge to okadaic acid. Reconstitution experiments with purified mitochondrial and cytoskeletal fractions showed that the cytoskeleton of hepatocytes produced a more remarkable inhibition of CPT-I than the cytoskeleton of Fao cells. The present data may be explained by a disruption of interactions between CPT-I and cytoskeletal components in tumor cells that may be involved in the okadaic acid-induced activation of hepatic CPT-I as previously suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号