首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blends of poly(butadiene‐g‐poly(styrene‐co‐acrylonitrile) (ABS) with polycarbonate (PC) are some of the most successful multiphase materials, with applications in the automotive and electronics industries. The mechanical properties of the complete incompatible blends are mainly determined by the interaction between the poly(styrene‐co‐acrylonitrile) (S/AN) component of the ABS and the PC as well as through the dispersion of the elastomeric component poly(butadiene) in the thermoplastic S/AN‐matrix. The aim of our work is to optimize the modification process by the use of new substituted amino alcohols and amino phenols, as well as the use of a more efficient catalyst. Both reactive and non reactive compatibilization of polymer blends should be performed with the new ABS‐modifications.  相似文献   

2.
The recycling possibilities of poly(butylene terephthalate)/polycarbonate/acrylonitrile–butadiene–styrene (PBT/PC/ABS) ternary blend with and without glass‐fiber content were investigated using repeated injection molding process. In this study, PBT/PC/ABS ternary blends were reprocessed at five times and the results were presented after each recycling process. The recycling possibility of PBT/PC/ABS ternary blend was evaluated by measuring the mechanical, chemical, thermal, and rheological properties. Mechanical properties were determined by the tensile strength, yield strength, strain at break, elastic modulus, impact strength, flexural strength, and flexural modulus. Chemical and thermal properties were evaluated by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, and scanning electron microscopy. Rheological properties of the ternary blends were studied by melt flow index measurement. From the results, it was found that mechanical properties of recycled composites were better than virgin PBT/PC/ABS ternary blends. POLYM. COMPOS., 35:2074–2084, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
The morphology and mechanical properties of polycarbonate (PC) blends with rubber‐toughened styrene–maleic anhydride copolymer materials (TSMA) were investigated and compared with the properties of blends of PC with acrylonitrile–butadiene–styrene (ABS) materials. The PC/TSMA blends showed similar composition dependence of properties as the comparable PC/ABS blends. Polycarbonate blends with TSMA exhibited higher notched Izod impact toughness than pure PC under sharp‐notched conditions but the improvements are somewhat less than observed for similar blends with ABS. Since PC is known for its impact toughness except under sharp‐notched conditions, this represents a significant advantage of the rubber‐modified blends. PC blends with styrene–maleic anhydride copolymer (SMA) were compared to those with a styrene–acrylonitrile copolymer (SAN). The trends in blend morphology and mechanical properties were found to be qualitatively similar for the two types of copolymers. PC/SMA blends are nearly transparent or slightly pearlescent. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1508–1515, 1999  相似文献   

4.
The gloss properties of the polycarbonate (PC)/poly(methyl methacrylate‐acrylonitrile‐butadiene‐styrene) (MABS) blend with styrene‐acrylonitrile‐co‐glycidyl methacrylate (SAN‐co‐GMA) as a compatibilizing agent were investigated. For the PC/poly(MABS)/SAN‐co‐GMA (65/15/20, wt %) blend surface, the reduction of gloss level was observed most significantly when the GMA content was 0.1 wt %, compared with the blends with 0.05 wt % GMA or without GMA content. The gloss level of the PC/poly(MABS)/SAN‐co‐GMA (0.1 wt % GMA) blend surface was observed to be 35, which showed 65% lower than the PC/poly(MABS)/SAN‐co‐GMA blend without GMA content. The gloss reduction was most probably caused by the insoluble fractions of the PC/poly(MABS)/SAN‐co‐GMA blend that were formed by the reaction between the carboxylic acid group in poly(MABS) and epoxy group in SAN‐co‐GMA. The results of optical and transmission electron microscope analysis, spectroscopy study, and rheological properties supported the formation of insoluble structure of the PC/poly(MABS)/SAN‐co‐GMA blend when the GMA content was 0.1 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46450.  相似文献   

5.
The present work focuses on the compatibization of styrene‐co‐butadiene rubber (SBR)/acrylonitrile‐co‐butadiene rubber (NBR) blends with dichlorocarbene modified styrene‐co‐butadiene rubber (DCSBR) as a function of concentration of compatibilizer and composition of the blend. FTIR studies, differential scanning calorimetry and dynamic mechanical analysis reveal molecular level miscibility in the blends in the presence of compatibilizer. The formation of interfacial bonding is assessed by analysis of swelling behaviour, cure characteristics, stress–strain data and mechanical properties. These studies show that the compatibilizing action of DCSBR becomes more prominent as the proportion of NBR in the blend increases. The resistance of the vulcanizate towards thermal and oil ageing improved with compatibilization. The change in technological properties is correlated with the crosslink density of the blends assessed from swelling and stress–strain data. © 2001 Society of Chemical Industry  相似文献   

6.
Polyamide (PA) and acrylonitrile/butadiene/styrene copolymer (ABS) may appear as a mixture in the recycled plastic stream. The incompatibility of these blends results in a blend with poor mechanical properties. The aim of this work is to partially convert the nitrile groups of the acrylonitrile/styrene copolymer (SAN) into oxazoline groups by reaction with aminoethanol (AE). Such modified SAN (SAN‐m) can react with the amine or carboxylic acid end groups of PA, and therefore used as compatibilizers for blends of PA with ABS. SAN‐m was found to reduce the SAN‐domain size in the PA/SAN‐blends. The initial acrylonitrile content of SAN‐m had a strong influence on the degree of conversion into oxazoline groups and on the compatibilizing effect. Mechanical properties of SAN‐m compatibilized PA/ABS blends were investigated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 449–455, 2002  相似文献   

7.
We studied the morphological, mechanical, and rheological properties of polycarbonate (PC) and poly(acrylonitrile–butadiene–styrene) (PolyABS) blends with different types of compatibilizer. Styrene–acrylonitrile–maleic anhydride terpolymer (SAM) was used as a compatibilizer of the blends. For comparison, styrene–acrylonitrile–glycidyl methacrylate terpolymer (SAG) was also used as a compatibilizer. For the PC–PolyABS (70/30 wt %) blends with SAM, the mechanical strength and complex viscosity reached a maximum when the SAM concentration was 5 phr. The mechanical and rheological results of the blend were consistent with the morphological result that the PolyABS domain size reached a minimum when the SAM content was 5 phr. The interfacial tension (α) of the blend was compared with the compatibilizer type and content, which were calculated by the Palierne emulsion model with the relaxation time of the PC–PolyABS blend. The α is consistent with the morphological and mechanical properties of the PC–PolyABS blend. The results of the morphological, mechanical, and rheological properties of the blend suggest that SAM was a more effective compatibilizer than SAG, and the optimum compatibilizer content of SAM was 5 phr. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46418.  相似文献   

8.
Tetramethylpolycarbonate‐block‐poly(styrene‐co‐acrylonitrile) (TMPC‐block‐SAN) block copolymers containing various amounts of acrylonitrile (AN) were examined as compatibilizers for blends of polycarbonate (PC) with poly(styrene‐co‐acrylonitrile) (SAN) copolymers. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fibre retraction technique and an asymmetric double‐cantilever beam fracture test. Reduction in the average diameter of dispersed particles and effective improvement in the interfacial properties was observed by adding TMPC‐block‐SAN copolymers as compatibilizer of PC/SAN blend. TMPC‐block‐SAN copolymer was effective as a compatibilizer when the difference in the AN content of SAN copolymer and that of SAN block in TMPC‐block‐SAN copolymer was less than about 10 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
High impact toughness poly(vinyl chloride) (PVC)/(α‐methylstyrene)‐acrylonitrile‐butadiene‐styrene copolymer (70/30)/acrylic resin (ACR) blends were prepared. Incorporation of ACR did not play a negative role in thermal properties. The glass transition temperature, heat distortion temperature, and thermal stability remained constant as ACR content increased. With the addition of 10 phr (parts by weight per hundred parts of resin) of ACR, the impact strength increased by 20.0 times and 7.2 times compared with that of pure PVC and that of PVC/(α‐methylstyrene)‐acrylonitrile‐butadiene‐styrene copolymer (70/30) blends, respectively. However, tensile strength and flexural properties decreased. The morphology changed from domain distortions to crazing with fibrillar plastic deformation as ACR content increased. The toughening mechanism varied from “shear yielding” to “craze with shear yielding,” which depended on the content of ACR. This study presents the finding that addition of ACR drastically improved impact toughness without sacrificing any heat resistance, and the enhanced impact strength could be at the same level of supertough nylon. J. VINYL ADDIT. TECHNOL., 21:205–214, 2015. © 2014 Society of Plastics Engineers  相似文献   

10.
In this article, we have examined the physical and mechanical properties of poly(vinyl chloride) (PVC)/α‐methyl‐styrene‐acrylonitrile (αMSAN; 31 wt % AN concentrations) blends with different blend ratios. And, we also examined the effect of the molecular weights of PVC on the miscibility and material properties of the blends prepared by melt extrusion blending. Our results showed that the PVC/αMSAN blends have good processing properties and good miscibility over all blend ratios because of the strong interaction between PVC and αMSAN. And, the blends showed enhanced mechanical and thermal properties. In addition, high molecular weight PVC showed reasonable processability when melt blended with αMSAN, which resulted in enhanced mechanical and physical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
The weldabilities of two commercial blends of polycarbonate (PC) and acrylonitrile‐butadiene‐styrene (ABS) to themselves and to several other resins and blends are assessed through 120 Hz vibration welds of 6.35‐ and 3.2‐mm‐thick specimens. While the thicker specimens of both blends have relative weld strengths of 83%, the thinner specimens in one of the grades have a lower relative weld strength of 73%. Welds of thicker specimens of both grades to PC have relative strengths of 85%. Again, welds of thinner specimens of one of the grades to PC have a lower relative strengths of 68%. Welds of the thinner specimens of this grade with ABS have relative strengths of 85%. Welds of this material with poly(butylene terephthalate) (PBT), a PC/PBT blend, modified poly(phenylene oxide), and a poly(phenylene oxide)/polyamide blend, have relative weld strengths of 45%, 26%, 76%, and 20%, respectively.  相似文献   

12.
Binary blends of poly(vinyl chloride) (PVC) with α‐methylstyrene‐acrylonitrile‐butadiene‐styrene copolymer (AMS‐ABS) were prepared via melt blending. A single glass transition temperature (Tg) was observed by differential scanning calorimetry, thus indicating that PVC is miscible with the α‐methylstyrene‐acrylonitrile‐styrene in AMS‐ABS. The results from attenuated total reflection Fourier transform infrared spectra indicated that specific strong interactions were not available in the blends. With increasing amounts of AMS‐ABS, both heat distortion temperature and thermal stability were increased considerably. With regard to mechanical properties, flexural and tensile properties decreased with increasing AMS‐ABS content. A synergism was observed in impact strength. The morphology of both impact‐fractured and tensile‐fractured surfaces, observed by scanning electron microscopy, correlated well with the mechanical properties. It is suggested that there was a transition of fracture mechanisms with the changing composition of the binary blends—from shear yielding for blends rich in PVC to cavitation for blends rich in AMS‐ABS. J. VINYL ADDIT. TECHNOL., 19:1–10, 2013. © 2013 Society of Plastics Engineers  相似文献   

13.
Within a IUPAC study, melt processing, mechanical, and fatigue crack growth properties of blends of polyamide 6 (PA 6) and poly(acrylonitrile–butadiene–styrene) (ABS) were investigated. We focused on the influence of reactive compatibilization on blend properties using a styrene–acrylonitrile–maleic anhydride random terpolymer (SANMA). Two series of PA 6/ABS blends with 30 wt % PA 6 and 70 wt % PA 6, respectively, were prepared with varying amounts of SANMA. Our experiments revealed that the morphology of the matrix (PA 6 or ABS) strongly affects the blend properties. The viscosity of PA 6/ABS blends monotonically increases with SANMA concentration because of the formation of high‐molecular weight graft copolymers. The extrudate swell of the blends was much larger than that of neat PA 6 and ABS and decreased with increasing SANMA concentrations at a constant extrusion pressure. This observation can be explained by the effect of the capillary number. The fracture resistance of these blends, including specific work to break and impact strength, is lower than that of PA 6 or ABS alone, but increases with SANMA concentration. This effect is most strongly pronounced for blends with 70 wt % PA 6. Fatigue crack growth experiments showed that the addition of 1–2 wt % SANMA enhances the resistance against crack propagation for ABS‐based blends. The correlation between blend composition, morphology and processing/end‐use properties of reactively compatibilized PA 6/ABS blends is discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
A comprehensive experimental study was carried out to replicate sub‐micron features using the injection molding technique. For the experiments, five different plastic materials were selected according to their flow properties. The materials were polycarbonate (PC), styrene‐butadiene block copolymer (SBS), impact modified poly(methyl methacrylate), methyl methacrylate‐acrylonitrile‐butadiene‐styrene polymer (MABS), and cyclic olefin copolymer (COC). Nanofeatures down to 200‐nm line width and with aspect ratios (aspect ratio = depth/width) of 1:1 could be replicated. In all selected materials, the greatest differences between the materials emerged when the aspect ratio increased to 2:1. The most favorable results were obtained with the use of high flow polycarbonate as the molding material. The best replication results were achieved when melt and mold temperatures were higher than normal values.  相似文献   

15.
Polypropylene (PP) and acrylonitrile–butadiene–styrene blends of different composition were prepared using a single‐screw extruder. The binary blend of PP/ABS was observed to be incompatible and shows poor mechanical properties. PP‐g‐2‐hydroxyethyl methacrylate (2‐HEMA) was used as a compatibilizer for the PP/ABS blends. The ternary compatibilized blends of PP/ABS/PP‐g‐2‐HEMA showed improvement in the mechanical properties. Electron micrographs of these blends showed a homogeneous and finer distribution of the dispersed phase. The mechanical performance increased particularly in the PP‐rich blend. The 2.5‐phr (part per hundred of resin) compatibilizer was observed to bring improvement to the properties. The suitability of various existing theoretical models for the predication of the tensile moduli of these blends was examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 72–78, 2003  相似文献   

16.
The addition of maleic anhydride grafted polybutadiene (PB‐g‐MAH) can greatly improve the compatibility of polyamide 66 (PA66)/acrylonitrile‐butadiene‐styrene copolymer (ABS) blends. Unlike the commonly used compatibilizers in polyamide/ABS blends, PB‐g‐MAH is compatible with the ABS particles' core phase polybutadiene (PB), rather than the shell styrene‐acrylonitrile (SAN). The compatibility and interaction of the components in the blends were characterized by Fourier transform‐infrared spectra (FTIR), Molau tests, melt flow index (MFI), dynamic mechanical analyses (DMA), and scanning electron microscopic (SEM) observations. The results show that PB‐g‐MAH can react with the amino end groups in PA66 while entangle with the PB phase in ABS. In this way, the compatibilizer anchors at the interface of PA66/ABS blend. The morphology study of the fracture sections before and after tensile test reveals that the ABS particles were dispersed uniformly in the PA66 matrix and the interfacial adhesion between PA66 and ABS was increased significantly. The mechanical properties of the blends thus were enhanced with the improving of the compatibility. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

17.
In a systematic manner, the roles of MWNTs as filler and styrene acrylonitrile copolymer‐graft‐maleic anhydride (SAN‐MA) as compatibilizer, individually and together, on dynamic‐mechanical behavior of polycarbonate (PC)‐rich/acrylonitrile butadiene styrene terpolymer (ABS) blend were studied. The investigations were performed using small‐scale mixing in a one‐step procedure with a fixed MWNTs content of 0.75 wt% and a blend composition of PC/ABS = 70/30 w/w. PC/SAN blends and nanocomposites as simpler model system for PC/ABS were also studied to reveal the role of the rubbery polybutadiene (PB) fraction. It is found that the tendency of MWNTs to localize within the PC component in compatibilized PC/ABS was lower than in compatibilized PC/SAN blends. Dynamic mechanical analysis (DMA) revealed the dual role of SAN‐MA as blend compatibilizer and also promoter of MWNTs migration towards PC, where SAN‐MA to MWNTs weight ratio varied between 1 and 4. At the compatibilizer/MWNTs weight ratio of 1, MWNTs localized in PC component of the blends whereas increasing the compatibilizer/MWNTs ratio to 4 led to migration of MWNTs toward SAN or ABS component. In DMA studies, loss modulus normalization of the nanocomposites revealed the coexistence of mobilized and immobilized regions within the nanocomposite structure, as a result of MWNTs and compatibilizer loading. POLYM. ENG. SCI., 54:2696–2706, 2014. © 2014 Society of Plastics Engineers  相似文献   

18.
A series of methyl methacrylate‐butadiene‐styrene (MBS) graft copolymers were synthesized via seeded emulsion polymerization techniques by grafting styrene and methyl methacrylate on poly(butadiene‐co‐styrene) (SBR) particles. The chlorinated poly(vinyl chloride) (CPVC)/MBS blends were obtained by melting MBS graft copolymers with CPVC resin, and the effect of the core/shell ratio of MBS graft copolymer and SBR content of CPVC/MBS blends on the mechanical properties and morphology of CPVC/MBS blends was studied. The results showed that, with the increase in the core/shell ratio, the impact strength of the blend increased and then decreased. It was found that, when the core/shell ratio was 50/50, the impact strength was about 155 J/m, and the tensile strength evidently increased. The toughness of the CPVC/MBS blend was closely related to the SBR content of the blend, and with the increasing of SBR content of blend, the impact strength of the blend increased. The morphology of CPVC/MBS blends was observed via scanning electron microscopy. Scanning electron microscopy indicated that the toughness of CPVC/MBS blend was consistence with the dispersion of MBS graft copolymers in the CPVC matrix. J. VINYL ADDIT. TECHNOL., 22:501–505, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
The incorporation of functionalized acrylonitrile–butadiene rubber (NBR) into recycled poly(ethylene terephthalate) (PET) was introduced as an effective route for modifying the properties of PET and as a new method for PET recycling as well. To achieve modified NBR, glycidyl methacrylate (GMA) was grafted onto NBR with optimized reactive mixing, in which the highest grafting degree and lowest gel content were generated. PET/NBR blends with and without GMA functionalization were produced by melt mixing, and the mechanical properties, dynamic mechanical thermal properties, and phase morphologies of the systems were determined and compared. We found that low amounts of peroxide initiator (dicumyl peroxide) and high levels of the GMA monomer in the presence of the styrene comonomer led to the maximum grafting degree and suppressed the competing rubber crosslinking and GMA homopolymerization reactions. The blend compatibility with PET determined from dynamic mechanical thermal analysis spectra and scanning electron microscopy images was greatly improved when the NBR‐grafted GMA was used instead of the neat NBR in the blend recipes. As a result, the rubber phase dispersed in the PET matrix more finely, and the impact strength of the blend advanced very significantly. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40483.  相似文献   

20.
A series of poly(acrylonitrile‐butadiene‐styrene) (ABS) grafting modifiers were synthesized by emulsion grafting poly(acrylonitrile‐styrene) (SAN) copolymer onto polybutadiene (PB) latex rubber particles. The chain transfer reagent tert‐dodecyl mercaptan (TDDM) was used to regulate the grafting degree of ABS and the molecular weight of SAN copolymers. By blending these ABS modifiers with Chlorinated polyvinyl chloride (CPVC) resin, a series of CPVC/ABS blends were obtained. The morphology, compatibility, and the mechanical properties of CPVC/ABS blends were investigated. The scanning electron microscope (SEM) studies showed that the ABS domain all uniformly dispersed in CPVC matrix. Dynamic mechanical analyses (DMA) results showed that the compatibility between CPVC and SAN became enhanced with the TDDM content. From the mechanical properties study of the CPVC/ABS blends, it was revealed that the impact strength first increases and then decreases with the TDDM content, which means that the compatibility between CPVC and the SAN was not the only requirement for maximizing toughness. The decreasing of tensile strength and the elongations might attribute to the lower entanglement between chains of CPVC and SAN. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号