首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An interlaboratory comparison of seven lots of commercially available RDX was conducted to determine what properties of the nitramine particles can be used to assess whether the RDX has relatively high or relatively low sensitivity. The materials chosen for the study were selected to give a range of HMX content, manufacturing process and reported shock sensitivity. The results of two different shock sensitivity tests conducted on a PBX made with the RDX lots in the study showed that there are measurable differences in the shock sensitivity of the PBXs, but the impact sensitivity for all of the lots is essentially the same. Impact sensitivity is not a good predictor of shock sensitivity for these types of RDX. Although most RDX that exhibits RS has low HMX content, that characteristic alone is not sufficient to guarantee low sensitivity. A range of additional analytical chemistry tests were conducted on the material; two of these (HPLC and DSC) are discussed within.  相似文献   

2.
TNO Prins Maurits Laboratory has actively followed and contributed to the research on the development of insensitive munitions (IM). One of the initial research topics at TNO focused on the improvement of the shape of RDX crystals and its relation to the shock sensitivity. The variation of crystal shape has been studied by crystallization from different solvents and/or by post‐treatment of the crystals. The role of the mean particle size on shock sensitivity was also included in these analyses. The decrease in shock sensitivity is even more pronounced when controlling the internal quality of crystals. In the meantime research has shifted to other energetic materials as well – in particular HMX and CL‐20 – in this way revealing step by step the important physicochemical parameters which play a role in determining the shock sensitivity of formulations containing these types of nitramines. Various characterization techniques, to determine the internal and external quality of crystals will be discussed, and their relation to shock sensitivity in PBXs will be shown. Two different grades of I‐RDX have been subjected to different characterization tests. The objective is to gain more understanding about which of the physicochemical parameters enables one to discriminate between a reduced sensitivity RDX and normal RDX.  相似文献   

3.
Size, shape, internal defects are very important properties of explosives crystals. These parameters play a role on both the explosive formulation processing and the detonic behavior of the explosive formulations. The use of explosive crystals free of solvent inclusions leads to decrease the shock sensitivity of cast explosive formulations. Many efforts for processing such high quality explosive crystals have been done and are still in progress. Qualitative observations of internal crystal defects can be performed by optical microscopy with matching refractive index. The purpose of this paper is to provide two accurate quantitative tools for internal crystal defects measurements. The first method is based on accurate measurements of the crystal apparent density. The second method records the mass of the species entrapped in the crystal internal cavities. Experiments are performed on two RDX batches. The strong correlation recorded between the results of the two complementary methods validates the measurements. Apparent density measurements provide an accurate global characterization of the internal defects population of a crystal batch sorting the crystals in function of their apparent density. The second method is a tool to identify the species entrapped in the crystals.  相似文献   

4.
Crystal morphology and shock sensitivity of a series of cyclotrimethylenetrinitramine (RDX) particles suspended from ethylene glycol were investigated. Flow rheology was employed to measure the rheological properties of the suspensions at constant temperature; it was observed that the stress‐shear rate and viscosity behavior of the suspensions were controlled by the particle morphology. The viscosity of the RDX suspensions changed with the roundness/smoothness of RDX crystals at all applied shear rates. The suspensions containing crystals with smoother morphology showed reduced viscosity. When the viscosity data was compared to the shock sensitivity results from the RS‐RDX Round Robin study, a good correlation was obtained. This study has validated the use of flow rheology to indicate the morphology and shock sensitivity of crystalline particles.  相似文献   

5.
In recent years much interest has been generated in a quality of reduced sensitivity RDX (RS‐RDX), like I‐RDX® which, when incorporated in cast cure and even pressable plastic bonded explosives (PBX compositions), can confer reduced shock sensitivity as measured through gap test. At crystal level, lot of work has been done to try to determine which property or properties may explain the behaviour of the corresponding cast PBX composition. But up to now, and despite an international inter‐laboratory comparison (Round Robin) of seven lots of RDX from five different manufacturers conducted from 2003 to 2005, even if some techniques lead to interesting results, there is no dedicated specification to apply to RS‐RDX. This quality (I‐RDX®) has proved to retain its low sensitivity even after ageing, which does not seem to be the case for standard RDX produced by the Bachmann process (when re‐crystallized under I‐RDX conditions in order to obtain RS‐RDX). It has been shown that the higher sensitivity of RDX produced by the Bachmann process, or the evolution of sensitivity after ageing of RS‐RDX produced from Bachmann RDX may be linked to the presence of octogen (HMX) during the crystallization process. In order to check such hypothesis, low HMX content RDX produced by the Bachmann process has been prepared and evaluated in cast PBX composition (PBX N 109). Results of the characterization of such quality of RDX and its evaluation in cast PBX composition as well as ageing behaviour are presented and discussed; there are indications that removal of HMX from Bachmann RDX may lead to RS‐RDX, which retains its RS character even after ageing.  相似文献   

6.
We report for the first time the mechanical properties of RDX crystals in a conventionally processed, sub‐millimeter form that have had no additional mechanical processing. Nanoindentation of RDX powders was used to measure the elastic modulus (19.1±1.9 GPa), hardness (0.741±0.098 GPa), and yield point (onset of plastic deformation) on the as‐grown faces of seven different RDX crystals, selected to provide random orientations. Properties within each crystal showed narrow distributions, while the range of properties across all crystals is indicative of testing a variety of orientations. The elastic modulus and hardness are within the range of other published reports on bulk and mechanically polished RDX. The distribution in yield point behavior, with the onset of plasticity occurring between 0.1 and 0.7 GPa, indicates that powders of RDX likely contain a significant number of dislocation sources in the as‐processed condition, suggesting that deformation sources are prevalent in the energetic component of plastic bonded explosives prior to incorporating into pressed forms.  相似文献   

7.
Intragranular defects inside RDX/HMX were studied by optical microscopy with matching refractive (OMS), sink‐float method (SFM), and micro‐focus CT (μCT) techniques. OMS results revealed the phenomenon that RDX/HMX had more defects and cracks than RS‐RDX/RS‐HMX. μCT results indicated that RDX/HMX had more defects with larger volume than RS‐RDX/RS‐HMX. The gap test showed that critical shock pressure/gap thickness was 6.4 GPa/19.4 mm for PBX based on RDX, while they were 7.5 GPa/17.5 mm and 8.6 GPa/16.2 mm for PBX based on M‐RDX and RS‐RDX, respectively. Meanwhile, an analysis of the relationship between defects inside RDX/HMX crystal and shock sensitivity was made. Finally, the shock pressure response under impact loading was investigated by discrete element method.  相似文献   

8.
The shock sensitivities of plastic bonded explosives were studied with a thin flyer impact test by using two types of pressed RDX. The thin flyer, driven by an electrically exploding plasma, exerts a short‐duration, high‐pressure pulse to the samples to trigger a shock‐to‐detonation process. It was found that the duration and magnitude of the incident shock strongly influence the dominant mode of hot‐spot formation, promoting a fast pore collapsing mechanism while suppressing other slower shear or friction mechanisms, as proposed by Chakravarty et al. [1]. The pressed PBX based on reduced sensitivity RDX had higher shock threshold pressure, compared to the pressed PBX based on commercial RDX. The difference was observed even with a certain portion of external extragranular defects. It is postulated that the internal crystal defects are more efficient than the external porosity in terms of the rapid reaction of hot spots.  相似文献   

9.
Reduced Sensitivity RDX (RS‐RDX) has received a lot of attention and interest from the explosive community in the recent years. There are several producers of RS‐RDX, most of them using a direct nitration (Woolwich process) for the RDX synthesis, while Chemring Nobel uses the Bachmann process. The processes for obtaining the RS properties probably differ between the various producers. Chemring Nobel has also developed an HMX quality that shows Reduced Sensitivity (RS‐HMX) of different particle size distributions. The shock sensitivity is at the same level as for RS‐RDX in comparable compositions. Reduced shock sensitivity has been obtained for RS‐RDX and Reduced Sensitivity (RS‐HMX) in both pressable and cast‐cured compositions. By using a pressable composition, it is possible to get the results from a BICT gap test faster than from a cast‐cured composition that has to go through a curing process. Chemring Nobel in cooperation with FFI have performed an extensive accelerated ageing testing of RS‐RDX produced by the Bachmann process. The samples have been aged at 60 and 70 °C and the shock sensitivity tested by two different gap tests. The results demonstrate that the Chemring Nobel RS‐RDX retain the insensitivity towards shock during ageing and show no degradation at all. Accelerated ageing testing of RS‐HMX has also been performed and shows no degradation in the shock sensitivity.  相似文献   

10.
An explosive composition, derived from AFX‐757, was systematically varied by using three different qualities of Class I RDX. The effect of internal defect structure of the RDX crystal on the shock sensitivity of a polymer bonded explosive is generally accepted (Doherty and Watt, 2008). Here the response to a mechanical non‐shock stimulus is studied using an explosion‐driven deformation test as well as the ballistic impact chamber. No correlation between RDX crystal quality and deformation sensitivity is observed. The DDT behavior (Deflagration to Detonation Transition) of the three plastic bonded explosives, although similar in composition, is distinct regarding the rate of diameter increase in the explosion‐driven deformation test. Recovered polymer bonded explosive from the explosion‐driven deformation test responds equally fast or slower in the ballistic impact chamber. Based on our experimental results the shear rate threshold as a single parameter describing mechanical sensitivity is challenged, and preference is given to the development of an ignition criterion based on inter‐granular sliding friction under the action of a normal pressure.  相似文献   

11.
A confined, quasi‐static uniaxial compression method, named as the compressive stiffness test (CST), is promoted to evaluate the quality of different RDX crystalline particles which are obtained from commercial and reprocessed lots. This method is based on the fact that the fragmentation or fracture behavior in the compression process could be correlated to the external/internal defects of targeted crystalline particles. The quality difference between the commonly used RDX and reprocessed RDX can be easily discriminated by compaction curves and the defined initial secant modulus can be used as a quantitative parameter to grade RDX particles. The results show that the RDX recrystallized from mixed solvents and spheroidized by treatment with solvent is of much higher quality than the commonly used RDX, and the particle size as well as external characteristics exert limited effects on the compaction curves, but the key factor is internal defects, which affect the coherence strength of RDX crystalline particles. Qualitative optical image analysis and quantitative particle apparent density measurements by liquid density gradient tubes also give consistent results with those from the CST.  相似文献   

12.
13.
In an attempt to further contribute to the characterization of explosive compositions, small scale Floret tests were performed using four RDX grades, differing in product quality. A Floret test provides a measure – by indentation of a copper block – of detonation spreading or the initiability and shock wave divergence and is applied in particular to explosives used in initiation trains. Both as‐received RDX and PBXs (based on the AFX‐757 composition, a hard target penetrator explosive) containing these RDX grades were tested in the Floret test set‐up. It was found that the Floret test method, when applied to granular, as‐received RDX, was not able to discriminate between the overall RDX product qualities on the basis of the resulting volume of the indentation in the copper block. For the Floret test data of the PBX samples, a division into two parts, where one of the RDX lots shows a lower dent volume compared to the other RDX lots tested. Based on the results presented in this paper with granular RDX and a PBX composition and earlier results with a different type of PBX (based on PBXN‐109, an insensitive high explosive used in a wide range of munitions), the Floret test could be developed into a screening test for shock sensitivity and product quality, without the need for complex and large volume casting of specific PBX compositions.  相似文献   

14.
为改善RDX的安全性能和力学性能,采用乳液聚合法制备RDX/聚甲基丙烯酸甲酯/氧化石墨烯(RDX/PMMA/GO)微球,并用相同方法制备了RDX/PMMA复合粒子进行对比;通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)和差示扫描热量仪(DSC)对样品进行表征,并测试其撞击感度和药柱的静态力学性能。结果表明,包覆后RDX/PMMA微球形貌趋于球形,RDX/PMMA/GO粒子存在明显的层状皱褶;RDX晶型均未发生改变;与原料RDX和RDX/PMMA相比,RDX/PMMA/GO微球的表观活化能分别提高22.16kJ/mol和15.17kJ/mol,升温速率趋近于0时的峰温和热爆炸临界温度与原料RDX相比分别提升6.45℃和6.23℃;特性落高由包覆前的26.74cm分别提至62.95cm和78.52cm,撞击感度明显降低。RDX/PMMA/GO抗压强度比RDX/PMMA增加了7.5MPa,表明GO的加入对复合材料的力学性能提升明显。  相似文献   

15.
RDX基铝薄膜炸药与铝粉炸药水下爆炸性能比较   总被引:1,自引:1,他引:1       下载免费PDF全文
为了减少铝粉炸药在生产过程中因铝粉对环境污染,降低铝粉炸药的撞击感度,提高含铝炸药的成型性及力学性能,将RDX用铝薄膜分层包裹得到新型的铝薄膜混合炸药。将铝薄膜混合炸药与铝粉炸药进行水下爆炸实验与爆速实验,得到两种炸药的爆速与压力时程曲线,经过分析计算得到两种炸药的压力峰值、冲量、冲击波能、气泡脉动周期与气泡能。结果表明:铝薄膜炸药药柱的轴向为RDX与铝薄膜独立贯通的结构,有利于降低混合炸药中添加物对基体炸药爆轰波传播的影响,从而使铝薄膜混合炸药的爆速高于铝粉炸药,导致铝薄膜炸药的冲击波损失系数高于铝粉炸药,使铝薄膜混合炸药的总能量、比气泡能与铝粉炸药相当情况下,其比冲击波能却降低了10.16%~10.33%,计算过程说明铝薄膜混合炸药的C-J压力计算公式具有合理性。  相似文献   

16.
PBX 9502 is an insensitive high explosive formulated comprised of 95 wt% TATB and 5 wt% Kel‐F 800TM binder. Due to the relatively high cost of manufacturing TATB (triaminotrinitrobenzene), methods for reclaiming TATB from PBX 9502 machine cuttings were previously developed. Reclaimed PBX 9502 was mixed with ~ 50% virgin PBX 9502 to produce “recycled” lots of PBX 9502. Several studies have shown significant differences between the mechanical properties of virgin and recycled lots of PBX 9502, and postulated that the differences were related to various aspects of TATB particle size and distribution. The purpose of this study is to show that these differences in mechanical properties are related to differences in the distribution of TATB within the microstructure of PBX 9502. Ultimately, a better understanding of these properties may lead to selected formulation changes for future rebuilds, Lifetime Extension Programs (LEP) and/or candidate replacements to enhance engineering and physics performance.  相似文献   

17.
湿法研磨制备改性HMX及其机械感度研究   总被引:1,自引:0,他引:1  
通过湿法研磨制备出不同粒度的改性HMX晶体,采用折光匹配法对其形貌进行表征,并测试了改性HMX的机械感度。讨论了研磨速率对HMX粒径的影响,以及改性前后HMX的机械感度,分析了湿法研磨对HMX机械感度的影响机理。结果表明,研磨速率为0.524m/s时得到的HMX粒度最小,为43.1μm,改性后的HMX摩擦感度降低60%,撞击感度降低68%,且研磨晶体粒度越小,晶体特性落高数值越大。晶体粒度及内部缺陷对机械感度的影响机制主要是研磨后晶体粒度减小且晶体内部缺陷减少,受到外力作用时,晶体内部热点产生和传播的概率降低。  相似文献   

18.
The effect of some DDT-preventing agents (DPAs) and their mixtures on the impact sensitivity of RDX/PU has been studied. All specimen for drop-hammer test were prepared by solvent-slurry method. Two ways were used in adding DPA. The behavior of moulding powders obtained to the mechanical impact were assessed using KAST Impact Hammer. The results have shown that some DPA decreased the impact sensitivity of RDX/PU with different degree, and the loading way of DPA also had obvious effect on it. Finally, the characteristic heights H50 and the remained quantities of samples after impacting were analyzed and discussed.  相似文献   

19.
Hydroxyl‐terminated polybutadiene (HTPB) based sheet explosives incorporating insensitive 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB) as a part replacement of cyclotrimethylene trinitramine (RDX) have been prepared during this work. The effect of incorporation of TATB on physical, thermal, and sensitivity behavior as well as initiation by small and high caliber shaped charges has been determined. Composition containing 85% dioctyl phthalate (DOP) coated RDX and 15% HTPB binder was taken as control. The incorporation of 10–20% TATB at the cost of RDX led to a remarkable increase in density (1.43→1.49 g cm−3) and tensile strength (10→15 kg cm−2) compared to the control composition RDX/HTPB(85/15). RDX/TATB/HTPB based compositions were found less vulnerable to shock stimuli. Shock sensitivity was found to be of the order of 20.0–29.2 GPa as against 18.0 GPa for control composition whereas their energetics in terms of velocity of detonation (VOD) were altered marginally. Differential scanning calorimeter (DSC) and thermogravimetry (TG) studies brought out that compositions undergo major decomposition in the temperature region of 170–240 °C.  相似文献   

20.
The crystallization of RDX (cyclotrimethylenetrinitramine) was carried out using cooling crystallization. Effect of cooling rate and antisolvent to solvent ratio on the inclusion was studied. Qualitative observation of internal crystal defects was performed by optical microscopy with matching refractive index. The quantitative amount of inclusions was determined by measuring concentration of solid. Effect of the cooling rate and the antisolvent to solvent ratio on supersaturation was investigated. The supersaturation affected significantly the inclusion of mother liquor inside the crystals. The higher supersaturation induced the more agglomeration, that caused the formation of the more inclusions inside RDX crystals. From morphological study, defect is formed in course of transformation from plate-like to polygon shape. An empirical correlation of the inclusion fraction of RDX with the relative supersaturation was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号