首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In this study, we focused on the preparation and characterization of poly(ethylene glycol) (PEG)/poly(methyl methacrylate) (PMMA) blends as novel form‐stable phase‐change materials (PCMs) for latent‐heat thermal energy storage (LHTES) applications. In the blends, PEG acted as a PCM when PMMA was operated as supporting material. We subjected the prepared blends at different mass fractions of PEG (50, 60, 70, 80, and 90% w/w) to leakage tests by heating the blends over the melting temperature of the PCM to determine the maximum encapsulation ratio without leakage. The prepared 70/30 w/w % PEG/PMMA blend as a form‐stable PCM was characterized with optical microscopy and Fourier transform infrared spectroscopy. The thermal properties of the form‐stable PCM were measured with differential scanning calorimetry (DSC). DSC analysis indicated that the form‐stable PEG/PMMA blend melted at 58.07°C and crystallized at 39.28°C and that it had latent heats of 121.24 and 108.36 J/g for melting and crystallization, respectively. These thermal properties give the PCMs potential LHTES purposes, such as for solar space heating and ventilating applications in buildings. Accelerated thermal cycling tests also showed that the form‐stable PEG/PMMA blend as PCMs had good thermal reliability and chemical stability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
By composing (Eudragit S) with fatty acids (stearic acid (SA), palmitic acid (PA), and myristic acid (MA)), form‐stable phase change materials (PCMs), which can retain the same shape in a solid state even when the temperature of the PCMs is over the melting points of the fatty acids, are prepared. The compatibility of fatty acids with the Eudragit S is proved by microscopic investigation and infrared (FTIR) spectroscopy. The melting and crystallization temperatures and the latent heats of melting and crystallization of the form‐stable PCMs are measured by Differential Scanning Calorimetry (DSC) method. The maximum mass percentage of all fatty acids in the form‐stable PCMs is found as 70%, and no leakage of fatty acid is observed at the temperature range of 50–70°C for several heating cycles. Thermal properties obtained from the DSC analysis indicate that the Eudragit S/fatty acid blends as form‐stable PCM have great potential for passive solar latent heat thermal energy storage (LHTES) applications in terms of their satisfactory thermal properties and utility advantage. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1402–1406, 2006  相似文献   

3.
This paper deals with the preparation, characterization, thermal properties and thermal reliability of novel form-stable composite phase change materials (PCMs) composed of eutectic mixtures of fatty acids and expanded vermiculite for thermal energy storage. The form-stable composite PCMs were prepared by incorporation of eutectic mixtures of fatty acids (capric–lauric, capric–palmitic and capric–stearic acids) within the expanded vermiculite by vacuum impregnation method. The composite PCMs were characterized by SEM and FTIR techniques. Thermal properties of the composite PCMs were determined by differential scanning calorimeter (DSC) method. DSC results showed that the melting temperatures and latent heats of the prepared composite PCMs are in the range of 19.09–25.64 °C and 61.03–72.05 J/g, respectively. The thermal cycling test including 5000 heating and cooling process was conducted to determine the thermal reliability of the composite PCMs. The test results showed that the composite PCMs have good thermal reliability and chemical stability. Furthermore, thermal conductivities of the composite PCMs were increased by adding 10 wt% expanded graphite. Based on all results, the prepared form-stable composites can be considered as promising PCMs for low temperature thermal energy storage applications due to their satisfactory thermal properties, good thermal reliability, chemical stability and thermal conductivities.  相似文献   

4.
In this study, form‐stable phase change material (PCM)–high density polyethylene (HDPE)/paraffin hybrid with different flame‐retardant systems are prepared by using twin‐screw extruder technique. This kind of form‐stable PCM is made up of paraffin (a dispersed phase change material) and a HDPE (a supporting material). Their structures and flammability properties are characterized by scanning electronic microscope (SEM) and cone calorimetry. Thermal stability is shown by thermogravimetry analysis (TGA) and its latent heat is given by differential scanning calorimeter (DSC) method. SEM results show that the HDPE forms a three‐dimensional net structure and the paraffin is dispersed in it. The peak of heat release rate (HRR) of the flame‐retardant form‐stable PCM decreases markedly. In TGA curves, although the onset of weight loss of flame‐retardant form‐stable PCMs occur at a lower temperature than that of form‐stable PCM, flame‐retardant form‐stable PCMs produce a large amount of char residue at 700°C. DSC results show that the addition of flame retardant has little effect on the phase change latent heat of PCM. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1320–1327, 2006  相似文献   

5.
Ceramic composites are widely used in medium/high temperature thermal energy storage (TES) and catalysis. Due to the high latent heat of phase change materials (PCMs), it is an effective method to improve the TES capacity by combining PCMs with ceramic materials. However, PCMs are easy to leak after being heated, so they need to be microencapsulated. Furthermore, for porous ceramic catalytic composites, the leakage of PCMs will block the pores, which seriously hinders their application. In this paper, a novel microencapsulated phase change material (MEPCM) with thermal expansion void was prepared using “double-layer coating, sacrificing inner layer” method. Based on that, two kinds of ceramic composites have been prepared. One is a TES material which composed of alumina, glass frit (GF) and MEPCMs. Thermal analysis results showed that the composite can still maintain stable heat storage performance after 200 melting-solidification cycles with little latent heat loss. Another is a multifunctional porous composite phase change material (CPCM) by loading Ce and Mn as catalyst via solution combustion synthesis (SCS) method, which can be used in low temperature SCR catalysis and other catalytic fields (100–300 °C). Based on MEPCMs with thermal expansion void, the two ceramic composites show great potential in energy storage and catalysis.  相似文献   

6.
In this work, polyethylene glycol (PEG) as a phase change material (PCM) was incorporated with palygorskite (Pal) clay to develop a novel form-stable composite PCM (F-SCPCM). The Pal/PEG(40 wt%) composite was defined as F-SCPCM and characterized using SEM/EDS, FT-IR, XRD, DSC, and TGA techniques. The DSC results revealed that the F-SCPCM has a melting temperature of 32.5°C and latent heat capacity of 64.3 J/g for thermal energy storage (TES) applications. Thermal cycling test showed that the F-SCPCM had good cycling thermal/chemical stability after 500 cycles. The TGA data proved that that both cycled and non-cycled F-SCPCMs had considerable high thermal durability. Consequently, the created F-SCPCM could be considered as an additive material for production of green construction components with TES capability. POLYM. ENG. SCI., 60:909–916, 2020. © 2020 Society of Plastics Engineers  相似文献   

7.
Polymeric phase change composites for thermal energy storage   总被引:1,自引:0,他引:1  
This article describes a group of thermal energy storage (TES) composites that combine TES and structural functionality. The composites are encapsulations of low melt temperature phase change materials (PCM) such as paraffin waxes in polymer matrices. Room temperature cured bisphenol‐A epoxy and styrene–ethylene–butylene–styrene (SEBS) polymers are chosen as matrix materials because of their excellent chemical and mechanical properties. The polymeric network structure in the composite encapsulates the PCMs, which transform from the solid to the liquid phase. The PCMs provide the energy storage function via the solid–liquid latent heat effect. The resulting composite exhibits dry‐phase transition in the sense that fluid motion of the PCM, when in the liquid phase, is inhibited by the structure of the polymer matrix. The polymer matrix is formulated to provide structural functionality. The latent heat, thermal conductivity and contact conductance, and structural moduli of composites having various PCM‐to‐matrix volume fractions are measured. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1240–1251, 2004  相似文献   

8.
A solid–solid phase change material (S‐SPCM) can store and release a specific amount of latent heat during its phase transition. In this regard, poly(styrene‐co‐maleic anhydride) (SMA)‐graft‐fatty acids (FA) copolymers were synthesized as novel S‐SPCMs for thermal energy storage (TES). The chemical structures of the SMA‐g‐FA copolymers were characterized by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT‐IR) spectroscopy techniques. The phase transformations of the copolymers form crystalline phase to amorphous phase were monitored using polarized optical microscopy (POM). The latent heat TES (LHTES) properties, thermal cycling reliability, and thermal stability of the S‐SPCMs were investigated by differential scanning calorimetry and thermogravimetric analysis methods. The SMA‐g‐FA copolymers produced as S‐SPCMs showed solid–solid phase transitions at about 40°C–60 °C range and had latent heat storage and release ability between 84 and 127 J/g, respectively. The S‐SPCMs had stable chemical structures and reliable LHTES characteristics even after 5,000 thermal cycling. They had reasonable thermal conductivity value changed in the range of 0.15–0.19 W/mK. Furthermore, it was concluded that the SMA‐g‐FA copolymers can be considered as promising S‐SPCMs for TES utilizations. POLYM. ENG. SCI., 59:E337–E347, 2019. © 2019 Society of Plastics Engineers  相似文献   

9.
选用纳米金属Cu和碳素材料石墨烯纳米片(GnPs)为改性剂分别添加至十四酸(MA)中,制备出Cu质量分数为1%、2%、3%和4%的Cu/MA混合相变蓄热材料及GnPs质量分数为1%、2%和3%的GnPs/MA混合相变蓄热材料,并对混合相变材料性能进行表征。结果表明:Cu/MA固态和液态热导率随Cu质量分数增加呈线性提高,1%(质量)GnPs/MA固态热导率较纯MA显著提高101.51%,随GnPs质量分数增加,热导率增幅减缓;FT-IR谱图表明Cu与MA及GnPs与MA间的混合均为物理作用;DSC结果显示添加Cu或GnPs可降低MA的过冷度和相变潜热,且随质量分数增加,相变潜热逐渐降低;4%(质量)Cu/MA和3%(质量)GnPs/MA放热时间相比于纯MA分别减少了23.4%和38.7%;4%(质量)Cu/MA和3%(质量)GnPs/MA在经历300次快速热循环试验后,晶体结构和相变温度基本保持不变,相变潜热分别降至168 J·g-1和181 J·g-1左右,仍满足蓄放热要求,两种材料均具有良好的热循环稳定性。  相似文献   

10.
In this study, a series of dimension‐stabilized fatty acid eutectics and triallyl isocyanurate (TAIC) composite phase change materials were prepared via in situ reaction by blending the fatty acids and TAIC, in which the fatty acids were introduced as a phase change material (PCM), and TAIC performed as a supporting material by self‐crosslinking. Fourier transform infrared spectroscopy, X‐ray diffraction, differential scanning calorimetry, scanning electron microscopy (SEM), and thermogravimetric analysis were applied to investigate the chemical structure, crystalline properties, phase transition behavior, microstructure, and thermal stability of the composites. The results indicated that the composite possessed excellent thermal reliability and heat storage durability even after 300 heating–cooling cycles. Moreover, the composites had applicable phase transition temperatures in the range of 26–40 °C and satisfying latent heat storage capacities of higher than 110 J/g. The SEM images showed that the particle size of the nanoparticles of the composites was about 200 nm after treatment. The dimensional measurement of the composites proved a high service temperature of 100 °C, indicating that the composites were promising for thermal energy storage materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44866.  相似文献   

11.
A series of poly(2‐alkyloyloxyethylacrylate) and poly(2‐alkyloyloxyethylacrylate‐co‐methylacrylate) polymers as novel polymeric phase‐change materials (PCMs) were synthesized starting from 2‐hydroxyethylacrylate and fatty acids. The chemical structure and crystalline morphology of the synthesized copolymers were characterized with Fourier transform infrared and 1H‐NMR spectroscopy and polarized optical microscopy, respectively, and their thermal energy storage properties and thermal stability were investigated with differential scanning calorimetry and thermogravimetric analysis, respectively. The thermal conductivities of the PCMs were also measured with a thermal property analyzer. Moreover, thermal cycling testing showed that the copolymers had good thermal reliability and chemical stability after they were subjected to 1000 heating/cooling cycles. The synthesized poly(2‐alkyloyloxyethylacrylate) polymers and poly(2‐alkyloyloxyethylacrylate‐co‐methylacrylate) copolymers as novel PCMs have considerable potential for thermal energy storage and temperature‐control applications. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
以热活化的甘肃临泽凹凸棒石为基体,采用热熔法和浸渍法制备了硬脂酸/活化凹凸棒石复合相变储热材料。利用红外光谱仪(FTIR)、X射线衍射仪(XRD)和扫描电子显微镜(SEM)等方法表征了复合材料的结构,采用示差量热扫描仪(DSC)和储放热实验考察了复合材料的储/放性能和稳定性。结果表明采用热熔法和溶液浸渍法制备的材料具有相同的结构,硬脂酸按38.5%的负载率以物理作用吸附于活化凹凸棒石表面,其相应的相变焓分别为68.44 J/g和69.06 J/g。稳定性实验表明2种材料均具有良好的化学稳定性,但热稳定性存在差异,热熔法制备的复合材料的热稳定性优于浸渍法制备的复合材料。  相似文献   

13.
脂肪酸类相变材料传热及液相渗漏的研究进展   总被引:2,自引:0,他引:2  
黄雪  崔英德  张步宁  冯光炷  尹国强 《化工进展》2014,33(10):2676-2680
能源的大量消耗使得储热技术研究越来越重要,相变材料作为一种有效的潜热储热材料在潜热储热系统中占据重要地位。脂肪酸相变材料因其来源广泛,具有共熔和共结晶特点、相变焓高和清洁可再生等优点受到广泛关注,但脂肪酸相变材料也存在热导率低和固-液相转变时液相渗漏等缺点。本文对国内外脂肪酸相变材料的传热和渗漏进行了综述与讨论,就热导率低的缺点提出了强化传热的方式,通过建立传热模型研究其导热行为并预测传热系数;就渗漏问题提出4种有效解决液相渗漏的方法,分析了各种方法的优缺点。对节能环保要求越来越高的今天,解决脂肪酸相变材料的传热和渗漏已成为热点问题。最后对脂肪酸相变材料的发展前景进行展望。  相似文献   

14.
The purpose of this paper is to introduce a novel UV‐cured interpenetrating polymer networked phase change materials (IPN‐PCMs), on which no article has been found in the so far published research. Maleated castor oil (MCO) was synthesized via maleinization reaction of castor oil with maleic anhydride. Organic–inorganic hybrid interpenetrating polymer networked (IPN) materials containing both cationic and radical sections and IPN‐PCMs containing tetradecanol, hexadecanol, and octadecanol were prepared. The chemical structure of MCO and organic–inorganic hybrid IPN‐PCMs were determined by using Fourier Transform Infrared Spectroscopy (FT‐IR). Differential scanning calorimetry (DSC) was used for examining the phase‐change behaviors of the materials. Thermal stability was investigated by thermogravimetric analysis (TGA). Moreover, the surface formation of the specimen was investigated by scanning electron microscopy (SEM). In conclusion, our study proved that because of their high latent heat storage scope and high thermal stability, the obtained organic–inorganic hybrid IPN‐PCMs could be used as thermal energy storage materials. POLYM. ENG. SCI., 58:870–875, 2018. © 2017 Society of Plastics Engineers  相似文献   

15.
L. Xia  R.Z. Wang 《Carbon》2010,48(9):2538-2548
Expanded graphite (EG)/paraffin composite phase change materials (PCMs), with mass fraction of EG varying from 0 to 10 wt.%, were prepared and characterized. Polarizing optical microscope investigation showed that compact EG networks formed gradually with increase in the mass fraction of EG. These networks provided thermal conduction paths which enhanced the thermal conductivity of the composite PCMs, e.g., an addition of 10 wt.% EG resulting in a more than 10-fold increase in the thermal conductivity compared to that of pure paraffin. Thermal characterization of the composite PCMs with a differential scanning calorimeter (DSC) revealed the effect of the porous EG on the phase change behavior of paraffin. The shifts in the phase change temperatures were observed. The maximum deviation of the melting/freezing points of the composite PCMs from that of pure paraffin was 1.2 °C whereas that of the peak melting/freezing temperature was 5.6 °C. The DSC investigation also showed an anomaly in the latent heat of the paraffin in the composite PCMs in that it first increased and then decreased with increase in the EG fraction. Heat storage/retrieval tests of the composite PCMs in a latent thermal energy storage system showed that the heat storage/retrieval durations for EG(10)/paraffin(90) composite were reduced by 48.9% and 66.5%, respectively, compared to pure paraffin, which indicated a great improvement in the heat storage/retrieval rates of the system.  相似文献   

16.
The form-stable paraffin/high density polyethylene (HDPE) composites and phase-change coatings were prepared and characterized in this study. The paraffin acts as thermal absorbing material and HDPE serves as the supporting material, which provides structural strength and prevents the leakage of melted paraffin. Scanning electronic microscope (SEM) showed that the paraffin is dispersed uniformly into porous network of HDPE. Differential scanning calorimeter (DSC) determined the melting temperature and heat storage capacity of the composite piece to be 49.6 °C and 150.88 kJ/kg, respectively. Moreover, results indicated that the composite pieces showed better thermal stability than composite powders after 6 temperature cycling experiments. The phase-change coatings with 40 wt% composites as functional filler showed good adhesion strength and shock resistance, and could decrease the surface temperature obviously comparing with nude Al alloy plates.  相似文献   

17.
全球范围内的能源短缺和环境污染问题迫使人们积极开发可再生新能源.储热技术是解决新能源不稳定性问题的关键技术.相变材料是重要的储热介质之一.熔盐相变材料因其储热密度高,可操作温度范围广的优势,成为储热材料领域研究的热点.为解决熔盐液相易泄漏、低导热和高成本的问题,选择钢渣为基体材料,制备了太阳盐/钢渣定型复合相变储热材料...  相似文献   

18.
脂肪酸相变材料的研究进展及应用   总被引:4,自引:0,他引:4  
中长链脂肪酸及其混合物具有良好的热物性、热稳定性和化学稳定性,是非常廉价易得的一类有机相变材料.综述了脂肪酸固-液相变材料在潜热蓄热领域的发展现状,主要介绍了常用脂肪酸相变材料及其低共熔混合物的热物性和热稳定性特点,指出了其强化传热方式,总结了国内外脂肪酸复合相变材料的制备方法.  相似文献   

19.
相变材料(PCMs)作为潜热储存和释放的介质,能够解决热能供需矛盾,从而缓解能源危机。纯相变材料具有能量密度高、温度范围广、能量输出稳定性强等优点,但其热导率低和在相变过程发生渗漏的缺点阻碍了其广泛的应用和发展。通过将PCMs与二维纳米片复合,PCMs热导率低和渗漏问题被有效解决。通过在导热机理方面进行详细阐述的基础上,综述了近几年来有关碳基二维纳米片、六方氮化硼(h-BN)纳米片、二硫化钼等复合储热材料的研究进展,为高性能二维纳米片基复合PCMs的设计提供一定的研究思路。  相似文献   

20.
This article reports on the morphology, melting and crystallization behavior, thermal stability, tensile properties, and thermal conductivity of phase‐change materials (PCM) for thermal energy storage. These materials were based on a soft Fischer‐Tropsch paraffin wax (PCM) blended with low‐density polyethylene, linear low‐density polyethylene, and high‐density polyethylene. These immiscible blends were melt‐mixed with copper (Cu) microparticles (up to 15 vol %) to improve the thermal conductivity in the matrix material. The presence of the Cu microparticles in the PCMs did not significantly change the crystallization behavior, thermal stability, or tensile properties of the blend composites in comparison with the corresponding polyethylene/wax blends and polyethylene/Cu composites. The observed differences were related to the fact that the wax seemed to have a higher affinity for the Cu particles than any of the polyethylenes, and so it crystallized as a layer around the Cu particles. The thermal conductivity of the samples increased almost linearly with increasing Cu content, but the samples had slightly lower values than the corresponding polyethylene/Cu composites, probably because of the lower thermal conductivity of the wax. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号