首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitramines are known to produce lower burning rates and higher pressure exponent (η) values. Studies on the burning rate and combustion behavior of advanced high‐energy NG/PE‐PCP/HMX/AP/Al based solid propellant processed by slurry cast route were carried out using varying percentages of HMX and AP. It was observed that propellant compositions containing only AP and Al loaded (total solids 75 %) in NG plasticized PE‐PCP binder produce comparatively lower pressure exponent (η) values similar to AP‐Al filled HTPB based composite propellants. However, energetic propellants containing high level of nitramine (40–60 %) produce high pressure exponent (0.8–0.9) values in the same pressure range. Incorporation of fine particle size AP (ca. 6 μm) and change in its concentration in the propellant composition reduces η value marginally and influences the burning rate. However, such compositions have higher friction sensitivity.  相似文献   

2.
Solid rocket propellants containing nitramine are considerably superior to doublebase propellants, both as regards their performance and mechanical properties. The pressure exponent of non-modified nitramine propellants is n ≥ 0.9. The possibility of changing the burning rate or, respectively, the pressure exponent has, however, only been realisable to a restricted extent up till now in propellants with an increased nitramine content. In the following propellant system containing nitramine, the effects of ammonium perchlorate on burning behaviour are studied:
  • ammonium perchlorate (AP)
  • hexogen (RDX)
  • nitroglycerin (NG), or trimethylolethane trinitrate (TMETN)
  • polyurethane binder (PU)
AP concentrations already as great as 10% produce considerable changes in the burning behaviour of the propellants described above. It is possible to reduce the pressure exponent by the addition of ammonium perchlorate from n ≥ 0.9 to n ≤ 0.65. The burning rates may also be influenced with AP concentrations ≤ 20% and by varying the AP particle size by the factor of 2. All the propellants prepared were easily castable and showed exceptionally good viscoelastic properties (strain at break εR > 200%) in the temperature range between −40 °C to + 50 °C. The thermal chemical stability is not influenced negatively in any way by the combination of nitric acid esters and ammonium perchlorate.  相似文献   

3.
The effect of certain lead and copper salts of organic acids and metallic oxides was studied on the burning rates and heat of explosion of CMDB propellants containing AP. Among lead and copper salts, basic lead salicylate gave increased burning rates, whereas lead methylene disalicylate and basic copper salicylate did not produce catalytic effect. In the case of metallic oxides, ferric oxide and cobalt oxide gave better catalytic activity than copper and chromium oxides. On crosslinking of nitrocellulose with an isocyanate, catalytic activity of ballistic modifiers was reduced. Burning rates obtained in a rocket motor (2-kg propellant) were higher by about 15%-20% than by strand burner (Crawford Bomb) method.  相似文献   

4.
NGu对含RDX硝胺发射药燃烧性能的影响   总被引:1,自引:0,他引:1  
为从微观的角度研究NGu对含RDX的硝胺发射药燃速压力指数改变的影响,采用改进的小型点火燃烧模拟装置,在35MPa左右对几种发射药进行低压中止燃烧实验.通过SEM电镜观察发射药在低压下燃烧的表面状况.结果表明,在硝胺发射药的燃烧过程中,NGu在燃烧表面形成较厚的熔融层,抑制了RDX的爆燃;RDX的爆燃与燃烧表面熔融层之间的"均衡状态"影响发射药燃速压力指数的变化,当RDX与NGu质量比小于1时,燃速压力指数明显降低;当RDX和NGu同时存在时,发射药的燃烧表面有针状晶体生成.  相似文献   

5.
The effect of nitramine particle size on the combustion behavior of inert binder based propellants has been extensively studied for RDX and HMX, but not CL‐20. Although materials such as RDX and HMX are useful for particular combustion applications, CL‐20 has a greater potential to improve the oxygen balance and energy density of a propellant. The current work investigates the effect of CL‐20 particle size on the combustion of CL‐20/HTPB propellants down to submicrometer sizes. An influence of particle size on the burning rate and combustion mechanism is reported. The 30 micrometer formulation burning rate data showed evidence of convective burning specifically at higher pressures, but the pressure dependence was comparable to neat CL‐20 at pressures below 8 MPa. A change in the combustion mechanism of the submicrometer formulation as a function of pressure was determined to be a result of the interaction of the propellant flame and the combustion residue. Data suggested that at low pressures diffusion in terms of active cooling was dominant for the submicrometer formulation. Higher pressure data for both the submicrometer and 3 micrometer formulations suggest the degree of active cooling is decreased as the burning rate pressure exponent is near 0.5 for both propellants. The indirect evidence for the presence of a melt layer for CL‐20 propellants is discussed.  相似文献   

6.
建立了一个AP-CMDB推进剂稳态燃烧模型。该模型可用于AP-CMDB推进剂和经典双基推进剂燃速特性的模拟计算,其计算结果与文献值相符合,说明该模型是合理、可行的。AP-CMDB推进剂计算结果表明,AP粒径减小,AP含量增加,推进剂燃速升高;而含能粘结剂——DB母体的含能程度越高,即NG含量增加,或NC的硝化度加大,都有利于提高推进剂的燃速。  相似文献   

7.
A solid rocket propellant based on glycidyl azide polymer (GAP) binder plasticized with nitrate esters and oxidized with a mixture of ammonium nitrate (AN) and triaminoguanidine nitrate (TAGN) was formulated and characterized. Non‐lead ballistic modifiers were also included in order to obtain a propellant with non‐acidic and non‐toxic exhaust. This propellant was found to exhibit a burning rate approximately twice that of standard GAP/AN propellants. The exponent of the propellant is high compared to commonly used composite propellants but is still in the useable range at pressures below 13.8 MPa. This propellant may present a good compromise for applications requiring intermediate burn rate and impulse combined with low‐smoke and non‐toxic exhaust.  相似文献   

8.
Different propellant compositions were prepared by incorporating nano‐sized cobalt oxide from 0.25 % to 1 % in HTPB/AP/Al‐based composite propellant formulations with 86 % solid loading. The effects on viscosity build‐up, thermal, mechanical and ballistic properties were studied. The findings revealed that by increasing the percentage of nano‐Co3O4 in the composition, the end of mix viscosity, the modulus and the tensile strength increased, whereas the elongation decreased accordingly. The thermal property data envisaged a reduction in the decomposition temperature of ammonium perchlorate (AP) as well as formulations based on AP. The ballistic property data revealed an enhanced burning rate from 6.11 mm s−1 (reference composition) to 8.99 mm s−1 at 6.86 MPa and a marginal increase in pressure exponent from 0.35 (reference composition) to 0.42 with 1 % nano‐cobalt oxide.  相似文献   

9.
Rocket propellants with reduced smoke and high burning rates recommend themselves for use in a rocket motor for high accelerating tactical missiles. They serve for an improved camouflage on the battle field and may enable guidance control due to the higher transmission of their rocket plume compared to traditional aluminized composite propellants. In this contribution the material based ranges of performance and properties of three non aluminized rocket propellants will be introduced and compared to each other. The selected formulations based on AP/HTPB; AP/PU/TMETN and AP/HMX/GAP/TMETN have roughly the same specific impulse of ISP = 2430 Ns/kg at 70:1 expansion ratio. The burning rates in the pressure range from 10–18 MPa vary from to 26–33 mm/s for the AP/HTPB propellant, 52–68 mm/s for the formulation based on AP/PU/TMETN and 28–39 mm/s for the propellant based on AP/HMX/GAP. With 58% and 20% AP-contents the propellants with nitrate ester plasticizers create a much smaller secondary signature than the AP/HTPB representative containing 86% AP. Their disadvantage, however, is the connection of high performance to a high level of energetic plasticizer. For this reason, the very fast burning propellant based on AP/PU/TMETN is endowed with a low elastic modulus and is limited to a grain configuration which isn't exposed too much to the fast and turbulent airstream. The mechanical properties of the AP/HMX/GAP-propellant are as good or better as those of the AP/HTPB propellant. The first one exhibits the same performance and burn rates as the composite representative but produces only one fifth of HCl exhaust. For this reason it is recommended for missile applications, which must have high accelerating power together with a significantly reduced plume signature and smoke production.  相似文献   

10.
Thermal decomposition and the burning properties of BAMO based propellants with HMX or AN/HMX have been investigated. The heat generated by the azide binder decomposition initiated and accelerated the thermal decomposition of HMX and AN. Ammonium perchlorate (AP) and lead stearate with carbon black significantly altered the mechanisms of the thermal decomposition and the burning properties of the HMX based propellants. AP showed an increase in burning rate with a slight decrease in burning rate pressure exponent. The lead catalyst yielded high value of the burning rate with the lowest pressure exponent. The ammonium dichromate also influenced the mechanisms of the thermal decomposition and the burning properties of the AN/HMX samples. The combination of ammonium dichromate and copper chromite was the most effective on the burning rate augmentation of AN/HMX based propellants. AN sublimed and evaporated from the condensed phase and mainly reacted exothermically in the gas phase HMX and AN/HMX based propellants showed smokeless burning characteristics in the small rocket motor combustion tests.  相似文献   

11.
Composite rocket propellants prepared from nitramine fillers (RDX or HMX), glycidyl azide polymer (GAP) binder and energetic plasticizers are potential substitutes for smokeless double‐base propellants in some rocket motors. In this work, we report GAP‐RDX propellants, wherein the nitramine filler has been partly or wholly replaced by 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7). These smokeless propellants, containing 60% energetic solids and 15% N‐butyl‐2‐nitratoethylnitramine (BuNENA) energetic plasticizer, exhibited markedly reduced shock sensitivity with increasing content of FOX‐7. Conversely, addition of FOX‐7 reduced the thermochemical performance of the propellants, and samples without nitramine underwent unsteady combustion at lower pressures (no burn rate catalyst was added). The mechanical characteristics were quite modest for all propellant samples, and binder‐filler interactions improved slightly with increasing content of FOX‐7. Overall, FOX‐7 remains an attractive, but less than ideal, substitute for nitramines in smokeless GAP propellants.  相似文献   

12.
The effect of lead and copper salts and certain metallic oxides was studied on the burning rates of RDX-based CMDB propellants in the pressure region 35–105 [kg/cm2]. Lead methylene disalicylate (LMDS), basic copper salicylate (BCS). cobaltic oxide and lead stannate produced higher burning rates by 10%–16%. However, these additives were comparatively more effective with nitramine-based CMDB propellants than AP-based CMDB propellants. Fluorides of iron, lead and chromium were ineffective as burning rate catalysts. Inclusion of carbon black along with lead salts or metallic oxide gave only marginally higher burning rates. None of the ballistic modifiers studied produced plateau/mesa effect.  相似文献   

13.
In a systematic study to compare the effects of the values of burning rate and pressure exponent in RDX‐AP based composite propellant, various compositions with varying percentages of zirconium carbide (ZrC) and zirconium silicate (ZrSiO4) were formulated to select a suitable candidate. Various rocket parameters of each formulation were theoretically predicted by the NASA CEC‐71 program and the burning rate was evaluated in pressure range of 3–11 MPa. In addition, density, sensitivity, and thermal properties of compositions having maximum effects on pressure exponent’s values were also evaluated. It was concluded that ZrSiO4 enhances the pressure exponent “n” value substantially, whereas ZrC doesn’t have significant effects on it as compared to base composition and also provides higher density values of composite propellant formulated.  相似文献   

14.
研究了有机铋铜复盐(Gal-BiCu)与炭黑、不同芳香族铜盐(Cu1和Cu2)及金属燃烧功能助剂(NB)复配对DNTF/HMX-CMDB推进剂燃烧性能的影响。分析了Gal-BiCu与其他催化剂复配后影响DNTF/HMX-CMDB推进剂燃烧行为的原因。结果表明,Gal-BiCu能有效调节DNTF/HMX-CMDB推进剂的燃烧性能,提高推进剂燃速,显著降低压强指数;当Gal-BiCu与炭黑、Cu1、NB复合时,催化性能更佳;NB质量分数为0.5%时,推进剂在8~20MPa较宽区间内出现平台燃烧,压强指数n≤0.2;8~15MPa区间内压强指数降至0.11。  相似文献   

15.
新型高能高强度JMZ发射药的燃烧特性   总被引:1,自引:1,他引:0  
为探索混合硝酸酯增塑的聚醚聚氨酯黏合剂体系的新型发射药的燃烧性能,通过密闭爆发器常规实验和高压实验.研究分析了JMZ发射药在不同压力范围的燃烧特性。结果表明,JMZ发射药在低压下的燃速压力指数较大,具有高含量RDX硝胺发射药的共同特征,但在高压下的燃速压力指数逐渐变小,与制式发射药相当,在燃速压力指数的变化过程中不存在明显的转折现象。另外,JMZ发射药在起始阶段表现出了良好的燃烧渐增性,对身管武器的应用是十分有利的。  相似文献   

16.
Very few efficient bonding agents for use in solid rocket propellants with nitramine filler materials and energetic binder systems are currently available. In this work, we report the synthesis, detailed characterization, and use of neutral polymeric bonding agents (NPBA) in isocyanate‐cured and smokeless composite rocket propellants based on the nitramine octogen (HMX), the energetic binder glycidyl azide polymer (GAP), and the energetic plasticizer N‐butyl‐2‐nitratoethylnitramine (BuNENA). These polymeric bonding agents clearly influenced the viscosity of the uncured propellant mixtures and provided significantly enhanced mechanical properties to the cured propellants, even at low NPBA concentrations (down to 0.001 wt‐% of propellant). A modified NPBA more or less free of hydroxyl functionalities for interactions with isocyanate curing agent provided the same level of mechanical improvement as regular NPBA containing a substantial number of reactive hydroxyl groups. However, some degree of reactivity towards isocyanate is essential for function.  相似文献   

17.
采用静态与水下声发射法测试了CL-20含量及其粒度级配对NEPE推进剂燃速与压强指数的影响;采用DSC与TG-IR联用研究了CL-20对NEPE推进剂热分解行为的影响。结果表明,随着CL-20质量分数由42%增至50%,推进剂燃速与压强指数上升,燃烧效率提高,表明CL-20氧化能力高于GAP/硝酸酯含能黏合剂体系;随着CL-20/HMX、CL-20/Al质量比增高,推进剂燃速上升,燃烧效率上升;CL-20对推进剂燃速和压强指数的贡献高于HMX;随着CL-20/AP质量比增高,CL-20/AP混合体系分解产物氧化能力降低,燃烧反应速率降低,燃速降低;CL-20粒度级配对NEPE推进剂燃烧行为影响显著,当CL-20的粒径(d50)在5~50μm时,随着细粒度CL-20含量增高,推进剂燃速与燃速压强指数下降;当体系中存在超细粒度CL-20(d50=500nm)时,推进剂燃速与燃速压强指数随着超细粒度CL-20含量的增加而有所增加,4种粒度CL-20对NEPE推进剂燃速的贡献顺序为:粗粒度>中粒度>超细粒度>细粒度。  相似文献   

18.
A new process for continuous manufacturing of composite propellants has been developed using Twin Screw Extrusion (TSE). The effects of TSE‐processing on the burning rates of an ammonium perchlorate (AP)‐based composite propellant have been characterized over a wide composition range (79 to 87 wt. % AP) and a wide range of screw speeds (45 to 85 RPM) using a quadratic model for an experimental Response Surface Analysis (RSA) based on the Kowalski, Cornell, and Vining (KCV) algorithm. Using Student‘s T‐test, it was determined that burning rates obtained from strand‐burning rate tests at 3.5 MPa, 7.0 MPa, and 10.5 MPa are affected only by the individual ingredients, the interaction between the coarse AP particles and the binder, and the screw speed. Measured burning rates were found to be 40% to 100% higher than Petite Ensemble Model (PEM) predictions, which was accounted for by modifying the PEM through a power law relationship with pressure that includes a rule‐of‐mixtures dependence of the exponent and coefficient on the weight fraction of coarse and fine AP particles. The resulting modified PEM reduced differences between the predictions and experimental data by 79% at 3.5 MPa, 83% at 7.0 MPa, and 78% at 10.5 MPa.  相似文献   

19.
A comparison of various experimental results for combustionrelated properties evaluation, including burning rates, deflagration heat, flame structures and thermal decomposition properties, of AP/RDX/Al/HTPB composite propellants containing nano metal powders is presented. The thermal behavior of n‐Al (nano grain size aluminum) and g‐Al (general grain size aluminum i.e., 10 μm) heated in air was also investigated by thermogravimetry. The burning rates results indicate that the usage of bimodal aluminum distribution with the ratio around 4 : 1 of n‐Al to g‐Al or the addition of 2% nano nickel powders (n‐Ni) will improve the burning behavior of the propellant, while the usage of grading aluminum powders with the ratio 1 : 1 of n‐Al to g‐Al will impair the combustion of the propellant. Results show that n‐Al and n‐Ni both have a lower heating capacity, lower ignition threshold and shorter combustion time than g‐Al. In addition n‐Al is inclined to burn in single particle form. And the thermal analysis results show that n‐Ni can catalyze the thermal decomposition of AP in the propellant. The results also confirm the high reactivity of n‐Al, which will lead to a lower reaction temperature and rather higher degree of reaction ratio as compared with g‐Al in air. All these factors will influence the combustion of propellants.  相似文献   

20.
The flammability limits and ballistic properties of composite fuel-rich propellants were studied experimentally, using PBAN/AP propellant formulations. Higher pressure and AP contents as well as smaller AP particle size were found to promote sustained combustion and to increase burning rate. The addition of potassium perchlorate (KP) in place of AP increased the burning rate pressure exponent from about 0.3 to over 0.7 at optimum conditions. Ferric oxide and copper chromite catalysts caused an increase of the burning rate by a factor of 2, while the addition of aluminum powder at the expense of the fuel binder was found to have a remarkable effect on the burning rate with a maximum increase of as high as 5-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号