首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The friction and wear between the piston and cylinder liner significantly affects the performance of internal combustion engines. In this paper, segments from a commercial piston/cylinder system were tribologically tested using reciprocating motion. The tribological contact consisted of aluminium alloy piston segments, either uncoated, coated with a graphite/resin coating, or an amorphous hydrogenated carbon (a‐C : H) coating, in contact with gray cast iron liner segments. Tests were conducted in commercial synthetic motor oils and base stocks at temperatures up to 120°C with a 2 cm stroke length at reciprocating speeds up to 0.15 m s−1. The friction dependence of these piston skirt and cylinder liner materials was studied as a function of load, sliding speed and temperature. Specifically, an increase in the sliding speed led to a decrease in the friction coefficient below approximately 70°C, while above this temperature, an increase in sliding speed led to an increase in the friction coefficient. The presence of a coating played an important role. It was found that the graphite/resin coating wore quickly, preventing the formation of a beneficial tribochemical film, while the a‐C : H coating exhibited a low friction coefficient and provided significant improvement over the uncoated samples. The effect of additives in the oils was also studied. The tribological behaviour of the interface was explained based on viscosity effects and subsequent changes in the lubrication regime, formation of chemical and tribochemical films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Yucong Wang  Kevin Brogan  Simon C. Tung 《Wear》2001,250(1-12):706-717
The purpose of this research was to evaluate the tribological behavior and compatibility between coated piston skirts and aluminum or cast iron bore counterfaces. Aluminum piston skirts with either composite polymer coatings (CPCs) or nickel/ceramic composite coatings (NCCs) were evaluated. Among the NCC coated piston skirts, Ni–P–BN showed consistent low wear on either cast iron or the aluminum bores. The tin plated piston skirt generated low wear depths on cast iron or 390 Al bore surfaces, but higher wear depths on 413 Al or 356 Al bore. All the CPCs generated much less wear on cast iron or aluminum cylinder bores compared with the Ni–P–SiC or Ni–P–Si3N4 skirt coatings. Even the wear tests using 413 Al and 356 Al bores showed very low wear depths. Among the CPCs, two coatings with different percentages of molybdenum disulfide and graphite particles dispersed in the resin generated the lowest wear on 390 Al bore. Using a CPC over a hard-anodized surface, the bore wear depth was further reduced and became much more consistent compared with using a CPC alone. The response of the coatings to a simulation of the oil starvation associated with scuffing conditions revealed that the CPCs had intrinsic resistance to scuffing. However, the durability was not very good. The Ni–P–BN coating had intrinsic resistance to scuffing and good durability when sliding against 390 Al bore in the unlubricated conditions. The hard anodized surfaces with the CPCs showed much improved coating durability with good scuffing resistance.  相似文献   

3.
We report in this article the friction and wear results of polyalphaolefin (PAO 10) base oil with the addition of 3 wt% boron nitride (BN) and molybdenum disulfide (MoS2) nanoparticles with nominal size of 70 and 50?nm, respectively. The formulations were tested using cast iron cylinder liner segments reciprocating against aluminum alloy piston skirt segments at 20, 40, and 100?°C. The results showed that, at a load of 250?N and a reciprocating frequency of 2?Hz, BN did not lower friction whereas MoS2 nanoparticles were very effective at reducing both friction and wear, compared with the base oil. The viscosities of both formulations were similar to the base oil, which allowed for a direct comparison between them. Raman spectroscopy showed the formation of an aligned MoS2 layer on the cast iron liner surface, which most likely functions as a tribofilm. In the case of the cast iron liner tested with BN nanolubricant, no traces of BN were found. The effect of surfactants was also studied, and it was found that some surfactants were not only beneficial in dispersing the nanoparticles in oil, but also in producing some reduction in friction and wear, even when used as stand-alone additives in PAO 10.  相似文献   

4.
Increasing environmental awareness and demanding low energy consumption are of the top priorities for future vehicles manufacturing companies. This can be achieved by reducing wear and friction of engine components, so that its efficiency and lifetime can be increased. Surface treatments and coatings contribute to a better lubrication with oils and can participate significantly in achieving these goals. In this paper, diamond-like carbon (DLC) coating has been incorporated to the vehicle piston rings with different RF powers using magnetron sputtering method. The tribological properties like wear and coefficient of friction have been analysed using Pin-on-Disk tribometer. Micro-hardness and nano-hardness of the coated piston rings were characterized by micro-indentor and nano-indentation processes. Surface microstructure and elemental compositions were observed using Scanning Electron Microscopy. Experimental results demonstrated that the DLC coating shows lower wear and friction under similar operating conditions as compared to uncoated piston rings. Thus, usage of DLC coating has enhanced the engine life time. Silicon interlayer has also been applied between nitrided piston rings and DLC layer in order to have better coating adhesion. The properties of the interlayer are not studied but usage of it is found to protect DLC coating from delamination.  相似文献   

5.
T. Haque  A. Morina  A. Neville  R. Kapadia  S. Arrowsmith 《Wear》2009,266(1-2):147-157
Diamond-like carbon (DLC) coatings have became accepted non-ferrous coatings for automotive tribo-components as they offer excellent tribological properties resulting in improved fuel economy and reduced dependence on existing lubricant additives which can be harmful to catalytic converters and ultimately to the environment. Obtaining optimum durability (wear) as well as high fuel economy (low friction) using DLC-coated parts relies in part on the compatibility between surface and lubricant additives. The objective of this study is to understand the role of friction modifiers and antiwear additives on the durability of DLC coating under boundary lubrication conditions. Experiments were performed using a pin-on-plate tribotester using plates coated by 30 at.% hydrogen containing DLC (HDLC) sliding against cast iron (CI) pins. The physical observation of the wear scar, formed on the HDLC coating by low friction and/or antiwear additives, was performed using both optical and scanning electron microscopes. X-ray photoelectron spectroscopy analysis was performed on the tribofilms to help to understand the tribochemical interactions between oil additives and the HDLC coating. Based on the physical observations and tribochemical analysis of the wear scar, the mechanisms of failure/wear of the HDLC coating are proposed and the requirement for designing optimal additive packages for the HDLC coating is discussed.  相似文献   

6.
ABSTRACT

Tribological studies were carried out with tetrahedral amorphous diamond-like carbon (ta-C DLC) coatings, varying in thickness and roughness, using two different contact configurations lubricated with seven types of hydraulic oils. Tribopair of cast iron and ta-C coated steel were tested in both non-conformal and conformal, unidirectional sliding contacts. The friction and wear results were mainly affected by the thickness of the coating in the non-conformal contact and the surface roughness of the coating in the conformal contact. Tests done with mineral base oil containing rust inhibitor in the non-conformal contact and with Polyalphaolefins and synthetic ester base oils in the conformal contact resulted in the lowest friction while that with mineral base oil containing zinc resulted in high friction and counterface wear. The results highlight the interdependence of contact configuration, lubricant chemistry, coating’s surface morphology and coating’s thickness in determining the tribological behaviour of ta-C coatings under boundary lubrication.  相似文献   

7.
Use of low friction non-ferrous coatings for engine tribo-components exposed to boundary lubrication is becoming popular in automotive industries. The excellent tribological behaviour of some non-ferrous coatings also reduces dependence on some harmful components of lubricants. In this work, hydrogenated diamond like carbon (HDLC) and chromium nitride (CrN) coatings sliding against cast iron counterbody have been used to study the interaction with friction modifiers (Moly dimer and Moly trimer) and antiwear additive zinc dialkyldithiophosphate (ZDDP) under boundary lubrication condition. The tribological results of the non-ferrous coatings are compared with those of uncoated steel. Tribofilms are formed using a reciprocating pin-on-plate tribometer. The chemical analysis of the tribofilms has been accomplished using X-ray photoelectron spectroscopy (XPS). The XPS analysis shows that the friction modifiers form a low friction tribofilm on the non-ferrous coatings. No antiwear tribofilm derived from ZDDP was observed on the HDLC coating but a stable antiwear tribofilm was found on the CrN coating. Moly dimer together with ZDDP+Base Oil showed the lowest friction coefficient for the CrN coating while Moly trimer along with ZDDP+Base Oil gave the lowest friction for the HDLC coating. This study will investigate the generic differences between the tribofilms formed on the DLC and CrN coatings by two additive-containing oils.  相似文献   

8.
To obtain a composite coating possessing both good conductivity and high wear resistance, a series of coatings with conductive graphite and epoxy resin were designed. The seepage critical value (SCV) of conductive coatings was used to identify the transformation between continuous phase and dispersed phase for graphite/epoxy composite coatings. Before SCV, the coatings were insulated with epoxy resin as continuous phase and the wear behavior was primarily characterized of adhesive wear with local adhesive spalling of epoxy resin. After SCV, the coatings appeared conductivity and the surface resistance decreased monotonically with the increase of graphite content. Both the curves of friction coefficient vs. graphite content and wear rate vs. graphite content showed the same model with two valleys at graphite content of 30% and 50%, respectively. At graphite content of 50%, an optimal solid lubricant film was obtained which leaded to the lowest friction coefficient and wear rate, due to a possible dynamic equilibrium between the transfer and spalling of debris. The tribological behaviors of these coatings were evaluated using a ring-on-block tribo-tester under dry sliding friction.  相似文献   

9.
Jia  Zhengfeng  Xia  Yanqiu  Pang  Xianjuan  Hao  Junying 《Tribology Letters》2011,41(1):247-256
Three synthesized benzotriazole-containing borate esters were separately added into poly-alpha-olefin (PAO) as additives, using molybdenum dithiocarbamate (MoDTC) as the comparison. The friction and wear behavior of Ti-DLC and Ti/Al-DLC coating on nitrided AISI-1045 steel sliding against AISI 52100 steel under the lubrication of PAO containing various additives was evaluated using a reciprocating ball-on-disk friction and wear tester. The morphology and chemical feature of the worn surfaces of the DLC coatings were observed and analyzed using a three dimensional (3D) surface profiler, a scanning electron microscope (SEM), and an X-ray photoelectron spectroscope (XPS). Results show that the three kinds of benzotriazole-containing borate esters as additives in PAO had much better tribological properties than MoDTC; the wear resistance of Ti/Al-DLC coating was better than Ti-DLC coating.  相似文献   

10.
The aim of this research work was to investigate tribological properties of low-friction DLC coatings when operating in helium atmosphere. Two commercial DLC coatings (a-C:H and Me-C:H) were included in the investigation and compared to reference PTFE-based coatings, normally used on components operating in helium. Coatings were deposited on hardened 100Cr6 bearing steel discs and tested against uncoated steel balls in low-load pin-on-disc contact configuration. Investigation was focused on the effect of substrate roughness (R a ?=?0.05?C0.2???m) and contact conditions, including contact pressure (150?C350?MPa) and sliding speed (0.2?C0.4?m/s) on the coefficient of friction of DLC coatings operating in helium. Results of this investigation show that for low-load sliding contact DLC coatings provide low friction in helium atmosphere, similar to soft PTFE-based coatings. At the same time DLC coatings investigated were found to substantially reduce wear of the coated surface. However, while the wear of the coated part has been more or less eliminated, application of DLC coating prolongs running-in and increases wear of the steel counter-part. Furthermore, also in helium atmosphere tribolgical behaviour of DLC coatings showed dependence on the coating type and contact conditions.  相似文献   

11.
摩擦副组合对摩擦磨损性能的影响   总被引:1,自引:0,他引:1  
在1:1惯性力矩制动试验台上研究了两种不同石墨形态的铸铁制动盘与两种混杂纤维增强的酚醛基制动闸片配副时的摩擦磨损性能。结果表明,对于某一配方的制动闸片,使用灰口铸铁盘的摩擦副具有较高的摩擦系数,但制动盘表面温度较高,闸片磨损量较大;对于某一种制动盘,使用B配方制动闸片时,制动盘表面的温度较高,但闸片的磨损量较小;在所有四种组合中,B配方制动闸片与灰口铸铁盘配副的瞬时摩擦系数能够完全满足有关技术要求。  相似文献   

12.
Epoxy-carbon nanotube (CNT) composites are promising coating materials for wear and corrosion critical applications such as marine bearings, shafts, bolts and gears. However, there are insufficient tribological data available for design. This article described the fabrication and tribological testing of an epoxy-CNT composite coating composed of a commercial epoxy primer and commercial CNT filler. The CNT filler was pre-treated so that it was compatible with epoxy resin and was dispersed using a ball milling process. A reciprocating sliding test rig was built for the measurement of friction and wear of the coatings which were subjected to multi-pass testing using the ball-on-plate sliding geometry. The rig allowed testing with either constant or varying normal force, along with measurement of normal and tangential forces. Thus, the coefficient of friction (COF) under ramping or constant normal force could be determined. Following testing, the samples were examined using an optical microscopy to determine the severity of any galling which had taken place. The coatings were found to display encouraging properties in all aspects of testing. COF values of around 0.2 were recorded under a nominal contact pressure up to 1 GPa. This coating can be used for components which require anti-corrosion and low friction properties.  相似文献   

13.
Influence of surface texture on boundary lubricated sliding contacts   总被引:8,自引:0,他引:8  
The friction and wear behaviour of boundary lubricated sliding surfaces is influenced by the surface texture. By introducing controlled depressions and undulations in an otherwise flat surface, the tribological properties can be improved. Lubricant can then be supplied even inside the contact by the small reservoirs, resulting in a reduced friction and a prolonged lifetime of the tribological contact.In the present paper, well-defined surface textures were produced by lithography and anisotropic etching of silicon wafers. The wafers were subsequently PVD coated with thin wear resistant TiN or DLC coatings, retaining the substrate texture. The size and shape of the depressions were varied and evaluated in reciprocating sliding under dry and boundary lubricated conditions.  相似文献   

14.
In the present study, the tribological performance and compatibility of hydrogenated amorphous carbon coating (a-C:H) and metal-doped diamond-like carbon (DLC) coating (Me-C:H) with formulated oils under the boundary lubrication regime was investigated. The investigation employed ball-on-flat contact geometry in reciprocating sliding motion and six formulated oils (manual gearbox oil, automatic gearbox oil, hydraulic oil, compressor oil, and normal and high performance motor oil), with pure poly-alpha-olefin (PAO) oil used as a reference. In addition, DLC coatings behavior in diesel and gasoline fuel was evaluated.Compared with the uncoated steel surfaces a-C:H coatings give improved wear resistance in base PAO as well as in fully formulated oils and fuels. On the other hand, W-doped DLC coatings show the lowest steady-state friction under boundary lubrication, especially when using oils with high additive contents.  相似文献   

15.
The tribological system in the piston assembly of an internal combustion engine includes contacts at interfaces of piston/piston ring/cylinder liner, piston skirt/cylinder wall, and piston/piston pin/ connecting rod. The thermal and tribological properties of the piston, piston rings, and cylinder wall are critical to the life and quality of the engine. Severe wear and scuffing failure, especially at the ring/ring groove and ring/liner interfaces, may present a major problem if the piston temperature is too high. Temperature considerations for the piston often limit the effort to increase the engine power.

A new engine piston incorporating the heat pipe cooling technology has been developed for reducing the piston temperature, especially in the ring land and along the piston wall. The current work aims at investigating the effect of reciprocating heat pipes on heat conduction in the piston, and thus the tribological behavior of the piston assembly. Due to the high thermal conductance of the reciprocating heat pipe, a considerably large amount of combustion heat, which is conventionally conducted through the piston wall, is transferred through heat pipes. This new design will result in a lower temperature on the piston wall and a reasonably low temperature distribution in the piston.  相似文献   

16.
Due to favorable tribological performance, PTFE- and PEEK-based polymeric coatings have received interest in air-conditioning and refrigeration compressor applications, as a potential solution to supplement and potentially replace conventional oil lubricants. The literature in this area is somewhat scarce, especially on the tribological performance of PTFE- and PEEK-based polymeric coatings under aggressive conditions simulating compressor operation. In this work, several PTFE-, PEEK-, resin- and fluorocarbon-based polymeric coatings, coated on gray cast iron were tribologically evaluated using a specialized tribometer under compressor specific conditions, that included oscillatory motion (simulating piston-type compressors) and unidirectional motion (simulating swash plate compressor operation). The coatings showed good to excellent tribological performance, and in general PTFE-based coatings exhibited better friction and wear behavior than the rest of the coatings, including PEEK-based coatings. Long-term durability experiments also showed the superiority and suitability of PTFE/Pyrrolidone coating for potential use in oil-less compressors (where oil-less conditions refer to operation in the absence of any liquid lubricant).  相似文献   

17.
M. Kalin  J. Vi?intin 《Wear》2006,261(1):22-31
Diamond-like carbon (DLC) coatings, which can nowadays be applied to many highly loaded mechanical components, sometimes need to operate under lubricated conditions. It is reasonable to expect that in steel/DLC contacts, at least the steel counter body will behave according to conventional lubrication mechanisms and will interact with lubricants and additives in the contact. However, in DLC/DLC contacts, such mechanisms are still unclear. For example, the “inertness” of DLC coatings raises several questions about whether they are able to provide real boundary “lubrication” or whether they are just a “passive” member in these contacts. On the other hand, biodegradable oils, in particular vegetable base oils, possess a good lubricating ability, often much better than mineral or conventional synthetic oils as a result of the large amount of un-saturated and polar components that can promote the lubricity of DLC coatings. Accordingly, in this study, we present the results of experiments under severe boundary-lubrication conditions during reciprocating sliding. We look at the effect of the type of mating surfaces - steel/DLC, DLC/DLC and steel/steel - and the type of oil on the tribological performance of DLC coatings. We compare the wear and friction behaviours of two types of DLC coatings, i.e., a “pure” non-doped a-C:H DLC coating (denoted as a-DLC) and a WC-containing multilayer coating (denoted as W-DLC) tested with a mineral oil and a biodegradable vegetable oil. These oils, which have very different chemical compositions, were used as base oils and also with mild AW and strong EP additives. Among other things, the results confirm the following: (1) coating/coating lubricated contacts can resemble metal-lubrication mechanisms; (2) additives reduce wear in coating/coating contacts by up to 80%; (3) better wear and friction performance are obtained with oils that contain large amounts of polar and un-saturated molecules; (4) a coating/coating combination generally results in less wear than a steel/coating combination.  相似文献   

18.
斯特封是常用的往复密封件,其中斯特封的PTFE圈性能及活塞杆表面材料在往复密封过程中起着重要作用。搭建往复密封实验台,取4组添加碳纤维PTFE的密封圈分别与镀Cr膜活塞杆和镀DLC膜活塞杆进行往复密封台架实验,实验后获取使用过的4组密封圈作为实验样本,并取1个全新未使用的添加碳纤维PTFE的密封圈作为参考样本。通过三维白光干涉表面形貌仪、场发射环境扫描电子显微镜和冷场发射高分辨扫描电子显微镜分别对实验样本的密封唇进行表面形貌、表面磨损和磨损表面元素进行测定。通过实验测定,得出镀膜材料脱落形成磨粒导致密封圈表面磨损。还对密封圈的加工方法和活塞杆镀膜材料的选择提出了建议。  相似文献   

19.
A ferrous-based coating with significant chromium was fabricated on aluminum alloy substrate using a plasma spray technique. The tribological performance of the as-fabricated ferrous-based coating sliding against different coatings including Cr, CrN, TiN, and diamond-like carbon (DLC) in an engine oil environment were comparatively studied. Results showed that the high hardness of the sprayed ferrous-based coating was achieved due to the dispersion strengthening effect of Cr7C3 phase embedded in the austenite matrix. The ferrous-based coating exhibited low friction coefficients when coupled with these four coating counterparts, which could be attributed to the boundary lubricating effect of engine oil. However, both friction and wear of the ferrous-based coating were different when sliding against these different coating counterparts, which might be closely related to the surface roughness, self-lubricating effect, and mechanical properties of the coupled coatings. Ferrous-based coating sliding against CrN and DLC coatings exhibited good tribological performance in engine oil. The best coating counterpart for the ferrous-based coating in an engine was DLC coating.  相似文献   

20.
Fuel economy and reduction of harmful elements in lubricants are becoming important issues in the automotive industry. An approach to respond to these requirements is the potential use of low friction coatings in engine components exposed to boundary lubrication conditions. Diamond-like-carbon (DLC) coatings present a wide range of tribological behavior, including friction coefficients in ultra-high vacuum below 0.02. The engine oil environment which provides similar favourable air free conditions might lead to such low friction levels.In this work, the friction and wear properties of DLC coatings in boundary lubrication conditions have been investigated as a function of the hydrogen content in the carbon coating. Their interaction with ZDDP which is the exclusive antiwear agent in most automotive lubrication blends and friction-modifier additive MoDTC has been studied. Hydrogenated DLC coatings can be better lubricated in the presence of the friction-modifier additive MoDTC through the formation of MoS2 solid lubricant material than can non-hydrogenated DLC. In contrast, the antiwear additive ZDDP does not significantly affect the wear behavior of DLC coatings. The good tribological performances of the DLC coatings suggest that they can contribute to reduce friction and wear in the engine, and so permit the significant decrease of additive concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号