首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alumina trihydrate (ATH) was added to (low‐density polyethylene)/(ethylene‐[vinyl acetate] copolymer) blends (LPEs) to enhance their flame resistance. The addition of substantial amounts of ATH has been known to have deleterious effects on the mechanical properties of such blends. Hence, electron beam irradiation was used to improve the mechanical properties of our ATH‐filled LPE specimens. The specimens were irradiated at 50 to 150 kGy before being cut into specified shapes for analysis. The increase in the irradiation dosage increased the gel content as a result of the formation of crosslinked networks. Also, the flame resistance of the LPE blends was enhanced by increasing both the loading level of ATH and the irradiation dosage. However, a high ATH loading level reduced tensile strength and elongation at break. Nevertheless, the electron beam irradiation maintained the tensile strength and elongation of the ATH‐filled blends. In addition, a higher content of ATH in the LPE blends showed reactive interaction with irradiation effects. A higher amount of ATH reduced the electrical resistivity of the blends, but analysis of their surface and volume resistivity showed that the electrical resistance of the ATH‐filled LPE blends could be improved by electron beam irradiation in the range of 50 to 150 kGy. J. VINYL ADDIT. TECHNOL., 20:91–98, 2014. © 2014 Society of Plastics Engineers  相似文献   

2.
The effect of two flame retardants [ammonium polyphosphate (APP) and montmorillonite (MMT)] was studied in relation to flame retardancy, mechanical properties and physical characteristics of polycarbonate (PC)/acrylonitrile butadiene styrene (ABS) blends. Moreover, the possible synergistic effect of these two flame retardant additives on the macromolecular blends was studied as well. Based on this research, it was revealed that APP- and MMT-raised loading has significantly increased the limiting oxygen index (LOI) of the resulting PC/ABS blends, which is due to the intumescence effect provoked by the incorporation of these flame retardant fillers. Incorporation of APP improved the LOI through intumescence effect while the addition of MMT led to intercalation of PC/ABS polymer matrix into the interlayer galleries of MMT particles. Besides, higher APP loading in PC/ABS blends has significantly promoted the formation of carbonaceous char residues as evidenced in TGA analysis, which indicates that addition of higher APP could improve thermal stability of PC/ABS blends. To improve the tensile strength and elongation-at-break, APP loading of 25 phr in PC/ABS blends together with various MMT loading would be suitable to ensure good dispersion and interfacial adhesion between the polymer chains and the additives. However, it is important to control the loading level of MMT as its excessive incorporation could result in flame-retarded PC/ABS blends with brittle behavior, showing weaker mechanical properties.  相似文献   

3.
聚丙烯/尼龙/纳米蒙脱土膨胀型阻燃材料的研究   总被引:7,自引:0,他引:7  
马志领  张伟燕 《塑料工业》2004,32(12):40-42
用尼龙6(PA6)代替季戊四醇(PT)作为成炭剂组成的膨胀型阻燃聚丙烯(PP)有熔滴、阻燃效果差的缺点,加入纳米蒙脱土(nano-MMT)作为阻燃剂的协效剂后可克服以上缺点。研究结果表明:加入质量分数为4%的nano-MMT不仅克服了阻燃体系熔滴的缺点,还使材料的拉伸强度提高了44.3%;热重分析和燃烧测试表明,nano-MMT的加入提高了材料的热稳定性,使剩炭率增加了12%,从而提高了材料的阻燃性能;由扫描电镜(SEM)观察发现:nano-MMT的加入增强了材料的界面粘结力,提高了材料的韧性,起到了一定的增容作用。  相似文献   

4.
This work was conducted to investigate the interactive effect of carbon nanotubes (CNTs) and montmorillonite (MMT) on the mechanical–physical properties of the polyvinyl alcohol (PVOH) nanocomposites. The increasing of CNTs amounts from 0.5 phr to 1 phr has gradually increased tensile strength and Young's modulus of all PVOH/MMT blends due to good interaction effect between MMT and CNTs with PVOH matrix especially for 2 phr MMT added PVOH blends. Besides, the addition of low CNTs amounts (≤1 phr) in PVOH matrix has significantly weakened the hydrogen bonding polymer matrix of all PVOH/MMT blends as evaluated in FTIR analysis. This is attributed to the good of dispersion of low amounts of CNTs could disturb the hydrogen bonding between PVOH molecules and thus induced the strength of O? H stretching in PVOH matrix. However, higher amounts of CNTs (≥1.5 phr) have significantly increased hydrogen bonding in PVOH matrix due to the agglomeration of higher amounts of CNTs particles in PVOH matrix as observed in Fourier transform infrared spectroscopy and scanning electron microscopy analysis. From X‐ray diffraction and transmission electron microscopy observation, the MMT particles were found to effectively exfoliate in PVOH matrix of 2 phr MMT (low amounts) added PVOH/MMT/MCNTs composites, indicates that low MMT amounts could improve the interaction effect between PVOH matrix and CNTs particles. In conclusion, the incorporation of lower amounts of CNTs has effectively improved on the mechanical and physical properties of all PVOH and PVOH/MMT blends. J. VINYL ADDIT. TECHNOL., 26:77–89, 2020. © 2019 Society of Plastics Engineers  相似文献   

5.
采用锥形量热仪研究了蒙脱土纳米复合涂料的阻燃性,分析了不同含量的纳米蒙脱土对阻燃性的影响.结果表明,纳米复合涂料的热释放速率、质量损失和质量损失速率等随着复合涂料中蒙脱土含量的增加而降低;当蒙脱土含量达到15%时,阻燃性能达到最佳值.用硅烷偶联剂KH-560对蒙脱土表面处理后制备的复合涂料,其热释放速率、质量损失和质量损失速率都有所下降,阻燃性能更优越.  相似文献   

6.
The present work aims to enhance thermal stability and flame retardancy of the epoxy/glass composites containing carbon nanotubes (CNTs). To achieve this purpose ammonium polyphosphate (APP) as a micro filler and montmorillonite (MMT) as nanofiller have been used. Since good dispersion is necessary to achieve thermal and flame resistivity in nanocomposites, it was found that combination of ultrasonication and high shear flow can result in a good dispersion of nanoparticles in polymer matrix. Thus, all samples were prepared according to this method. In order to study thermal resistance and flame retardancy of the samples, thermal gravimetric analysis (TGA) and limiting oxygen index (LOI) have been employed, respectively. TGA results showed that combination of 0.5 wt% CNTs with either 5 wt% MMT or 15 wt% APP can increase the initial thermal decomposition temperature up to 62 °C for the former polymer composite and 47 °C for the latter one. Overall stabilization effect (OSE) and integral procedure decomposition temperature (IPDT) parameters have also been calculated from TGA data. These results showed that the sample containing a combination of APP and CNT has the highest value of OSE. Moreover, IPDT of this sample has increased about 9 % compared with the neat epoxy. LOI of the samples showed that the addition of MMT and CNTs together could increase LOI about 8 % and introduction of APP to these samples increased LOI about 10 %, as well.  相似文献   

7.
Low density polyethylene (LDPE) blends with different additives were exposed to various doses of electron beam irradiation. The additives used were styrene-ethylene-butylene-styrene-block copolymers (SEBS), styrene-ethylene-butylene-styrene-block copolymer grafted with maleic anhydride (SEBS-g-MA) and mineral compounds. The structure–property behavior of electron beam irradiated blends was characterized in terms of mechanical, thermal, and electrical resistivity properties. The results indicated that the unirradiated LDPE blends with the different compositions showed improved mechanical properties, thermal and volume resistivity properties than pure LDPE. However, the improvement in properties of unirradiated blends by using SEBS-g-MA was higher than using SEBS copolymer. Further improvement in the mechanical, thermal and electrical properties of the LDPE blends was achieved after electron beam irradiation. The limited oxygen index (LOI) data revealed that the LDPE/SEBS-g-MA/ATH blend was changed from combustible to self-extinguishing material after electron beam irradiation to a dose of 100 kGy. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
In this study, the combination of organomodified montmorillonite (MMT), magnesium hydroxide (MDH), graphene oxide (GO) and expandable graphite (EG) as intumescent flame retardant for Linear Low-Density Polyethylene-Cyclo-Olefin Copolymer (LLDPE/COC) blends has been investigated. An amine-alcohol modified polyethylene (PEgDMAE) was used as compatibilizer. Limiting oxygen index (LOI), cone calorimeter determinations and flammability test (Underwriters Laboratory – UL-94) were used to evaluate the flame retardant properties. The structural characterization was measured by FTIR and scanning electron microscopy (SEM). The mechanical properties were also evaluated by Dynamic-mechanical analysis (DMA). The PEgDMAE compatibilizer enhanced the filler dispersion and increased the LOI to 22% for clay, 23% for GO and 26.5% for EG composites. The results indicated that the combination of each additive makes it possible to reduce the total Magnesium hydroxide filler content from 55 to 20% to achieve the flame retardant requirements. The flame retardant and mechanical properties of LLDPE/COC blends increased to a higher extent when using the combination of these additive fillers.  相似文献   

9.
The combination of different types of organo‐modified montmorillonite (MMT) with aluminum hydroxide (aluminum trihydrate—ATH), as a flame retardant system for polyethylene‐ethylene vinyl acetate (LDPE/EVA), blends were studied. Five different types of organically modified montmorillonite clays, each with different modifier, were used. The structural characterization was carried out by X‐ray diffraction (XRD) and scanning electron microscopy in transmission mode (STEM). The mechanical and rheological properties were also evaluated. The XRD analysis showed a clear displacement of the d001 signal, which indicates a good degree of intercalation, especially for the MMT‐I28 and MMT‐20, from Nanocor and Southern Clay Products, respectively. The presence of ATH and the compatibilizer did not have any effect on the exfoliation of the studied samples. The thermal stability and flame retardant properties were evaluated by thermogravimetric analysis (TGA), limiting oxygen index (LOI—ASTM D2863), and flammability tests (Underwriters Laboratory—UL‐94). The effect of different compatibilizers on the clay dispersion and exfoliation was studied. The results indicated that the addition of montmorillonite makes it possible to substitute part of the ATH filler content while maintaining the flame retardant requirements. The thermal stability of MMT/ATH‐filled LDPE/EVA blends presented a slight increase over the reference ATH‐filled LDPE/EVA blend. Compositions with higher clay content (10 wt %) showed better physicochemical properties. The increased stability of the higher clay content compositions results from the greater inorganic residual formation; this material has been reported to impart better performance in flammability tests. The mechanical properties and flame retardancy remained similar to those of the reference compound. The reduced ATH content resulted in lower viscosities and densities, facilitating the processing of the polymer/ATH/clay compounds. Extrusion of these compounds produced a lower pressure in the extrusion head and required reduced electrical power consumption. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Ethylene‐octene copolymer (EOC) was irradiated using electron beam irradiation at different dosages (30, 60, 90, and 120 kGy). Effect of irradiation dosage on thermal and mechanical properties was studied. When compared to low density polyethylene, EOC exhibited higher degree of crosslinking reflected in increased gel content, higher elastic modulus (G′), and lower tan δ obtained by rheology measurement at 150°C. Crosslinking caused improvement in high‐temperature creep and room temperature and also elevated temperature elastic properties. Differential scanning calorimetry revealed that e‐beam irradiation has caused a gradual reduction in crystallinity and a presence of a fraction with higher melting temperature. In the case of EOC, as the extent of crosslinking increased, stress at break showed an increasing trend whereas irradiation dosage had an inverse effect on elongation at break. Radiation dosage has positive effect on thermal stability estimated by thermogravimetric analysis. After 30 min of thermal degradation at 220°C, slightly higher C?O peak for crosslinked sample was found by Fourier transform infrared spectroscopy while for room temperature samples no C?O peak was detected. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
The nonlinear viscoelastic properties of PLA/PCL blends with and without clay (montmorillonite, MMT) under large amplitude oscillatory shear (LAOS) flow were investigated. The G′ and G″ as a function of strain amplitude, Lissajous plots and FT-rheology methods were used to interpret nonlinear behavior of PLA/PCL blends with and without MMT. Additionally, scanning electron microscopy (SEM) images of PLA/PCL with MMT blends were taken to investigate the effects of clay on the internal structure of the PLA/PCL blends. A relationship between morphological changes and linear and nonlinear rheological properties was observed. SEM image analysis revealed that clay acted as a compatibilizer and then reduced the size of droplets in the PCL domain of the PLA matrix. As a result, nonlinear properties sensitively reflect morphological changes with increasing MMT amount. The nonlinear rheological properties of PLA/PCL/MMT/metallocene-LLDPE (mLLDPE) were also investigated when mLLDPE was used as an impact modifier to improve mechanical properties, and the nonlinear rheological properties of PLA/PCL/MMT and PLA/PCL/MMT/mLLDPE were also compared.  相似文献   

12.
The development of fire retardant for wire and cable sheathing materials has oriented toward low smoke and halogen-free flame retardant technology to achieve better safety for electrical equipment and devices and to satisfy standards. However, many polymer flame resistance materials require a very high proportion of metal hydrate filler within the polymer matrix (60 wt%) to achieve a suitable level of flame resistance, which may lead to inflexibility, poor mechanical properties and problems during compounding and processing. In this study, the alumina trihydrate (ATH) was added to montmorillonite (MMT) as the halogen-free flame retardant of ethylene-vinyl acetate (EVA) copolymer, with various ratios of EVA/ATH/MMT. The prepared nanocomposites were characterized through various techniques of XRD, tensile test, DSC analysis, TGA, LOI evaluation, and FE-SEM to explore the effects of organic modified clay (OMMT) and the layer distance on the mechanical, thermal, and flame resistance properties. In the XRD examinations, the layer-distance of MMT increased from 1.27 to 1.96 nm when polymer was added to the octadecylamine modified MMT. The best tensile strength was obtained at 3 wt% MMT. In addition, the halogen-free flame resistance grade of EVA containing 3 wt% OMMT and 47 wt% ATH revealed the best elongation and fire resistance (LOI = 28). The tensile and flame resistance properties of the nanocomposites were also significantly improved.  相似文献   

13.
Polyester (PET) nanocomposite fibers were spun by adding master batches of linear low‐density polyethylene (LLDPE) loaded with Montmorillonite (MMT) nanoclay after compatibilizing the PET and LLDPE. The spun fibers showed increased thermal stability as well as flame retardancy, which increased progressively with the amount of nanoclay loaded into the fiber. There is slight decrease in tensile strength of the fiber accompanied by decrease in elongation % indicating addition of nanoclay makes the filaments stiffer. The onset of crystallization temperature occurred at higher temperature in case of composite fibers than on the neat PET fiber because of nucleating effect of nanoclay. The dyeability of the fibers was not affected and also had very little impact on the flame retardancy of the fiber. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
Nanocomposites of polymers with montmorillonite (MMT) yield upon pyrolysis and combustion an MMT‐rich surface of the char. The prevalent approach considers this accumulation as due to the gasification of the polymer and subsequent gradual precipitation of the MMT on the surface. According to the present paper, the enrichment in MMT is postulated to be due to a migration or convection of the MMT to the surface driven mainly by the lower surface free energy of the MMT. The role of the surface free energy in the surface structure of polymer blends, especially those involving a silicon‐containing component, is discussed. The enrichment occurs above the glass transition temperature and is temperature dependent. XPS evidence for the accumulation of MMT on the surface of a polystyrene/MMT nanocomposite is reviewed. Its dependence on the stability of the nanocomposite structure, and particularly on the stability of the quaternary ammonium compounds that bind the polymer to the MMT, is pointed out. The importance of the surface free energy in the flame retardancy of polymer blends as well as polymer‐additive mixtures is discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Rajkiran R. Tiwari 《Polymer》2011,52(4):1141-1154
The effect of organically modified clay on the morphology, phase stability and mechanical properties of polypropylene (PP) and polystyrene (PS) blends was studied using three molecular weight grades of PP. Maleated polypropylene was used, at a PP-g-MA/organoclay ratio of 1, to preferentially promote dispersion of the organoclay in the PP matrix. The MMT content was fixed at 3 wt% based on the PP/PP-g-MA/MMT phase and the PS content was varied from 0-100 wt% in the blend. All blends were processed using a twin screw extruder. The organoclay resides in the PP phase and at the PP/PS interface. The dispersed PS particle size is significantly reduced by the presence of MMT, with maximum decrease observed for the low viscosity PP compared to its blend without MMT. The blends with MMT did not show any change in onset of co-continuity, though MMT shifts the phase inversion composition toward lower PS contents. The phase stability of the blend was significantly improved by the presence of MMT; for blends annealed at 210 °C for 2 h the dispersed phase particle size increased by as much as 10x without MMT with little change was noted with MMT present in the blend. The tensile modulus of blends improved with the addition of MMT at low PS contents. Blends based on the highest molecular weight grade PP showed increase in the tensile yield stress up to 40 wt% PS in the absence of MMT. The tensile strength at break for blend increased slightly with MMT while elongation at break and impact strength decreased in the presence of MMT. Surface energy analysis model was used to predict the orientation and equilibrium position of the clay platelet at the interface based on the surface energies.  相似文献   

16.
The ageing behavior due to the effects of heat, ozone, γ‐ radiation, and water on ethylene propylene diene monomer rubber/styrene butadiene rubber (EPDM/SBR) blends was studied. The tensile strength, crack initiation, ozone ageing, gamma radiation, and water resistance of the blends were measured and used to determine the extent of ageing. Tensile strength of blends of different compositions increased after thermal ageing for 96 h at 100°C probably due to the continued cross‐linking. It has been observed that an increase in EPDM in the blends improves the ozone resistance of the blends. Crack initiation was noted only in blends with lesser amount of EPDM and the cracks in such blends were found deeper, wider and continuous. With 15 kGy irradiation dose, the tensile strength of the blends found to be decreased while it increased with 80 kGy dosage of γ‐radiation. The elongation at break showed a decreasing trend with increased dosage of γ‐radiation. It has also been observed that the EPDM rich blends showed negligible water uptake. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
The effects of electron beam radiation and zinc borate on the mechanico-physical properties and flame resistivity of magnesium hydroxide (MOH)- acrylonitrile butadiene styrene (ABS) composites have been investigated. The increasing of irradiation dosages has gradually improved the tensile strength and gel content of all samples by inducing the degree of crosslinking networks formed in ABS matrix. Analysis shows that higher amount of zinc borate is desirable to achieve promising tensile strength because zinc borate can attach into the interfaces between MOH particles and ABS matrix. Moreover, the addition of zinc borate could also retard the flammability of ABS as evidenced by LOI results. The crosslinking networks formed could improve fire resistance by reducing the melt dripping phenomenon. This is expected because the crosslinking networks can effectively minimize the oxygen gas to penetrate through the polymer structure to participate actively in the combustion activity.  相似文献   

18.
This article illustrates the influence of co‐monomer content in the ethylene octene copolymer (EOC) on the dry curing process of EOC:PDMS rubber blends. The EOC:PDMS blends were prepared by melt mixing in an internal mixer and crosslinked through electron beam radiation method. During electron beam irradiation both the EOC and PDMS phase gets crosslinked; which is evident from the gel content study. From the rheology analysis, it is understood that the EOC with high octene (co‐monomer) content has better radiation crosslinkability as compared with the EOC with low co‐monomer content. Through radiation crosslinking, the physico‐mechanical properties of the EOC:PDMS system was improved significantly. The tensile strength of high co‐monomer content EOC:PDMS 70:30 blends were drastically improved by 49.5% on irradiation with a dosage of 75 kGy. Morphology study of the EOC:PDMS system were carried out by scanning electron microscopy (SEM) and correlated with the physico‐mechanical properties. The radiation crosslinked blends shows higher volume resistivity, lower dielectric constant, and loss as compared with the uncrosslinked counterparts. POLYM. ENG. SCI., 57:1016–1027, 2017. © 2016 Society of Plastics Engineers  相似文献   

19.
The intumescent fire retardant polypropylene (IFP/PP) filled with ammonium polyphosphate (APP), melamine (M), and PA6 (charring agent) is discussed. Intumescing degree (ID) and the char yield were determined. Only when the three main components of IFR coexist at appropriate proportions, it has optimal ID and higher char yield. The appropriate proportion is PA6 : APP : M = 10 : 10 : 5. A new compatibilizer, carboxylated polypropylene (EPP), was added to PP/PA‐6 blend. Flow tests indicated that the apparent viscosity increased with the addition of EPP, thermal characterization suggested that EPP has reacted with PA6, PA6‐g‐EPP cocrystallized with PA6, and EPP‐g‐PA6 cocrystallized with PP; SEM micrographs illustrated that the presence of EPP improved the compatibility of PP and PA6. All the investigations showed that EPP was an excellent compatibilizer, and it was a true coupling agent for PP/PA6 blends. Using PA6 as a charring agent resulted in the IFR/PP dripping, which deteriorated the flammability properties. The addition of nano‐montmorillonite (nano‐MMT) as a synergistic agent of IFR enabled to overcome the shortcoming. The tensile test testified that the addition of nano‐MMT enhanced the mechanical strength by 44.3%. SEM showed that nano‐MMT improved the compatibility of the composites. It was concluded that the intumescent system with nano‐MMT was an effective flame retardant in improving combustion properties of polypropylene. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 739–746, 2006  相似文献   

20.
徐桂琴 《中国塑料》2002,16(7):40-42
讨论了不同辐射剂量对有卤阻燃,无卤阻燃以及不同基础树脂的低烟低卤阻燃聚乙烯样品的氧指数值的影响,结果表明,不同辐照剂量对不同阻燃体系的聚乙烯样品的氧指数值的影响是不同的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号