首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variable nature of the irradiance can produce significant fluctuations in the power generated by large grid‐connected photovoltaic (PV) plants. Experimental 1 s data were collected throughout a year from six PV plants, 18 MWp in total. Then, the dependence of short (below 10 min) power fluctuation on PV plant size has been investigated. The analysis focuses on the study of fluctuation frequency as well as the maximum fluctuation value registered. An analytic model able to describe the frequency of a given fluctuation for a certain day is proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The power generated by large grid‐connected photovoltaic (PV) plants depends greatly on the solar irradiance. This paper studies the effects of the solar irradiance variability analyzing experimental 1‐s data collected throughout a year at six PV plants, totaling 18 MWp. Each PV plant was modeled as a first order filter function based on an analysis in the frequency domain of the irradiance data and the output power signals. An empiric expression which relates the filter parameters and the PV plant size has been proposed. This simple model has been successfully validated precisely determining the daily maximum output power fluctuation from incident irradiance measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A model to simulate the fluctuations generated by a fleet of dispersed photovoltaic (PV) plants solely based on irradiance data measured at one single location is proposed. This simple model has been satisfactorily tested to quantify the power variability of a generic PV fleet, simply by defining two parameters: mean PV plant size and the number of plants in the PV fleet. Specifically, the model provides series of simulated power outputs that may be used in the grid operator simulation programmes, reproducing critical parameters, such as daily maximum fluctuation or the reserves required to offset these fluctuations. The model is created and validated against experimental 1‐s data collected throughout 2013 at six PV plants in Spain dispersed over 1100 km2, totaling 17 MWp. Likewise, the model has been succesfully tested against another irradiance dataset, four sites across the state of Colorado, USA, and spread over 2400 km2. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Partial shading has been recognized as a major cause of energy losses in photovoltaic (PV) power generators. Partial shading has severe effects on the electrical characteristics of the PV power generator, because it causes multiple maximum power points (MPPs) to the power‐voltage curve. Multiple maxima complicate MPP tracking, and the tracking algorithms are often unable to detect the global maximum. Considerable amount of available electrical energy may be lost, when a local MPP with low power is tracked instead of the global MPP. In this paper, the electrical characteristics of series‐connected silicon‐based PV modules under various partial shading conditions are studied by using a Matlab/Simulink simulation model. The simulation model consists of 18 series‐connected PV modules, corresponding to a single‐phase grid‐connected PV power generator. The validity of the simulation model has been verified by experimental measurements. The voltage and power characteristics of the PV power generator have been investigated under various system shading and shading strength conditions. The results can be utilized to develop new MPP tracking algorithms and in designing, for example, building integrated PV power generators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A simple microcontroller‐based maximum power point tracking controller is proposed for a single‐stage solar stand‐alone water pumping system for remote, isolated, and nonelectrified population, where less maintenance, low cost, and an efficient system is of prime interest. It consists of a photovoltaic (PV) module, a DC–AC converter utilizing space‐vector pulse‐width modulation, an induction motor coupled with a water pump, a voltage sensor, and a current sensor. A space‐vector pulse‐width modulation‐controlled DC–AC converter aided by a fast‐acting on–off supervisory controller with a modified perturb‐and‐observe algorithm performs both the functions of converting PV output voltage to a variable voltage, variable frequency output, as well as extracting the maximum power. A limited variable step size is preferred during transient state, and a steady frequency, which is calculated on the basis of steady‐state oscillation, is set during steady state. A fast‐acting on–off supervisory controller regulates DC link voltage during steady state and enables maximum power point tracking algorithm only during transient state to draw a new voltage reference. In the event of low voltage, the controller switches off the motor but continuously scans for an available PV voltage. The system is not protected against an overcurrent because the maximum current is equal to its short circuit current. The 16‐bit microcontroller dsPIC6010A (Microchip Technology, Inc., Chandler, AZ, USA) is used to implement the control functions. The proposed controller is verified through simulation as well as tested in the laboratory prototype model. The simulation and experimental results show good correlation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In areas with a high (photovoltaic) PV penetration, the installed PV capacity is the decisive factor in network planning. This article discusses meteorological impacts on distribution networks in these areas. The focus thereby is to determine the maximum feed‐in power of a distributed PV fleet. Therefore, a meteorological classification of the situations with maximum feed‐in is presented. With these results, the maximum feed‐in power is calculated for Germany. The maximum feed‐in of a distributed PV fleet is found for clear sky situations with a limit of 85% of the installed standard test condition power. This limit could be confirmed by the analysis of measured PV power feed‐in and its impact on the voltage levels in a distribution grid. The investigations are based on the analysis of data from a very detailed measurement campaign in a distribution grid with very high PV penetration in southern Germany. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT

Voltage violation is an important factor that restricts grid-connected photovoltaic system. The utilization of PV plant’s reactive power capability is an effective measure to mitigate voltage violation. This paper proposes two-stage voltage control strategy to enhance the voltage support capability of photovoltaic grid-connected system. In first stage, adaptive gains are set according to the maximum reactive capacity of each PV plant in order to distribute reactive power among PV plants more reasonably, avoiding certain PV plants operating in the limit state for a long time. In second stage, when the reactive power capacity is insufficient, the priority of active power curtailment for each PV plant is calculated in real time. Active power curtailment control will be performed in PV plants with high priority to released more reactive power capacity for voltage support. The simulation results carried out by PSCAD/EMTDC software demonstrated that this strategy can effectively solve the voltage violation problem. Meanwhile, the proposed strategy not only can exploit reactive capacity of each PV plant as much as possible to avoid certain PV plants operating in the limit state for a long time, but also can reduce the amount of active power curtailment when reactive power adequacy is insufficient.  相似文献   

8.
A low‐cost circuit was developed for stable and efficient maximum power point (MPP) tracking in autonomous photovoltaic‐motor systems with variable‐frequency drives (VFDs). The circuit is made of two resistors, two capacitors, and two Zener diodes. Its input is the photovoltaic (PV) array voltage and its output feeds the proportional‐integral‐derivative (PID) controller usually integrated into the drive. The steady‐state frequency–voltage oscillations induced by the circuit were treated in a simplified mathematical model, which was validated by widely characterizing a PV‐powered centrifugal pump. General procedures for circuit and controller tuning were recommended based on model equations. The tracking circuit presented here is widely applicable to PV‐motor system with VFDs, offering an efficient open‐access technology of unique simplicity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Achieving the maximum power output from photovoltaic (PV) modules is indispensable for the operation of grid‐connected PV power systems under varied atmospheric conditions. In recent years, the study of PV energy for different applications has attracted more and more attention because solar energy is clean and renewable. We propose an efficient direct‐prediction method to enhance the utilization efficiency of thin film PV modules by tackling the problem of tracking time and overcoming the difficulty of calculation. The proposed method is based on the p–n junction recombination mechanism and can be applied to all kinds of PV modules. Its performance is not influenced by weather conditions such as illumination or temperature. The experimental results show that the proposed method provides high‐accuracy estimation of the maximum power point (MPP) for thin film PV modules with an average error of 1.68% and 1.65% under various irradiation intensities and temperatures, respectively. The experimental results confirm that the proposed method can simply and accurately estimate the MPP for thin film PV modules under various irradiation intensities and temperatures. In future, the proposed method will be used to shed light on the optimization of the MPP tracking control model in PV systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Photovoltaic (PV) systems incorporated with sun‐tracking technology have been proposed and verified to effectively increase the power harvest. However, the actual power generated from a PV module has not been investigated and compared with that analyzed from theoretical models of the PV material. This study proposes a novel method for estimating the power benefit harvested by a two‐axis sun‐tracking type (STT) PV system. The method is based on semiconductor theory and the dynamic characteristics, including maximum power point tracking of PV modules that can be integrated with the database of annual solar incidences to predict the power harvested by any STT PV system. The increment of annual energy provided by an STT PV system installed at any arbitrary latitude, compared with that by a fixed‐type system, can be accurately estimated using the proposed method. To verify the feasibility and precision performance of this method, a fixed‐type and a two‐axis STT PV system were installed at 24.92° north latitude in northern Taiwan and tested through long‐term experiments. The experimental results show that the energy increments estimated by the theoretical model and actual measurement are 19.39% and 16.74%, respectively. The results demonstrate that the proposed method is capable of predicting the power benefit harvested by an STT PV system with high accuracy. Using our method, a PV system installer can evaluate beforehand the economic benefits of different types of PV systems while taking different construction locations into consideration, thereby obtaining a better installation strategy for PV systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. Thus, an MPPT can minimize the overall system cost. MPPTs find and maintain operation at the maximum power point, using an MPPT algorithm. Many such algorithms have been proposed. However, one particular algorithm, the perturb‐and‐observe (P&O) method, claimed by many in the literature to be inferior to others, continues to be by far the most widely used method in commercial PV MPPTs. Part of the reason for this is that the published comparisons between methods do not include an experimental comparison between multiple algorithms with all algorithms optimized and a standardized MPPT hardware. This paper provides such a comparison. MPPT algorithm performance is quantified through the MPPT efficiency. In this work, results are obtained for three optimized algorithms, using a microprocessor‐controlled MPPT operating from a PV array and also a PV array simulator. It is found that the P&O method, when properly optimized, can have MPPT efficiencies well in excess of 97%, and is highly competitive against other MPPT algorithms. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
By means of bilinear interpolation and four reference current–voltage (IV) curves, an IV curve of a photovoltaic (PV) module is translated to desired conditions of irradiance and PV module temperature. The four reference IV curves are measured at two irradiance and two PV module temperature levels and contain all the essential PV module characteristic information for performing the bilinear interpolation. The interpolation is performed first with respect to open‐circuit voltage to account for PV module temperature, and second with respect to short‐circuit current to account for irradiance. The translation results over a wide range of irradiances and PV module temperatures agree closely with measured values for a group of PV modules representing seven different technologies. Root‐mean‐square errors were 1·5% or less for the IV curve parameters of maximum power, voltage at maximum power, current at maximum power, short‐circuit current, and open‐circuit voltage. The translation is applicable for determining the performance of a PV module for a specified test condition, or for PV system performance modeling. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
To date, the majority of quality controls performed at PV plants are based on the measurement of a small sample of individual modules. Consequently, there is very little representative data on the real Standard Test Conditions (STC) power output values for PV generators. This paper presents the power output values for more than 1300 PV generators having a total installed power capacity of almost 15.3 MW. The values were obtained by the INGEPER‐UPNA group, in collaboration with the IES‐UPM, through a study to monitor the power output of a number of PV plants from 2006 to 2009. This work has made it possible to determine, amongst other things, the power dispersion that can be expected amongst generators made by different manufacturers, amongst generators made by the same manufacturer but comprising modules of different nameplate ratings and also amongst generators formed by modules with the same characteristics. The work also analyses the STC power output evolution over time in the course of this 4‐year study. The values presented here could be considered to be representative of generators with fault‐free modules. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Solar photovoltaic (PV) arrays in portable applications are often subject to partial shading and rapid fluctuations of shading. In the usual series-connected wiring scheme, the residual energy generated by partially shaded cells either cannot be collected (if diode bypassed) or, worse, impedes collection of power from the remaining fully illuminated cells (if not bypassed). Rapid fluctuation of the shading pattern makes maximum power point (MPP) tracking difficult; generally, there will exist multiple local MPPs, and their values will change as rapidly as does the illumination. In this paper, a portable solar PV system that effectively eliminates both of the aforementioned problems is described and proven. This system is capable of simultaneously maximizing the power generated by every PV cell in the PV panel. The proposed configuration consists of an array of parallel-connected PV cells, a low-input-voltage step-up power converter, and a simple wide bandwidth MPP tracker. Parallel-configured PV systems are compared to traditional series-configured PV systems through both hardware experiments and computer simulations in this paper. Study results demonstrate that, under complex irradiance conditions, the power generated by the new configuration is approximately twice that of the traditional configuration. The solar PV system can be widely used in many consumer applications, such as PV vests for cell phones and music players.  相似文献   

15.
This study investigates the transformation of photovoltaic (PV) electricity production from an intermittent into a dispatchable source of electricity by coupling PV plants to compressed air energy storage (CAES) gas turbine power plants. Based on historical solar irradiation data for the United States' south western states and actual PV and CAES performance data, we show that the large‐scale adoption of coupled PV–CAES power plants will likely enable peak electricity generation in 2020 at costs equal to or lower than those from natural gas power plants with or without carbon capture and storage systems. Our findings also suggest that given the societal value of reducing carbon dioxide and the sensitivity of conventional generation to rising fossil fuel prices, this competitive crossover point may occur much sooner. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A new perturbed‐based extremum seeking control (PESC) scheme is proposed in this paper to track the global maximum power point (GMPP). The PESC scheme has two control loops based on power of the photovoltaic (PV) array: the first loop operates as usually to track the maximum power point and the second sweeps all local MPPs to locate the GMPP. Once the GMPP is located based on its uniqueness (after the PV pattern is quickly scanned many times, depending on the PV pattern's profile), the GMPP is accurately tracked based on first control loop. The used PV patterns have the profile of the PV power characteristics obtained for PV array under partially shaded conditions (PSCs). This PESC scheme is proposed to track the GMPP in the PV applications, but also in other multimodal problems from industry, being a good motif to revive the specialists' interest for the extremum seeking control field. The results obtained here are very promising for both search speed and tracking accuracy performances of the GMPP under different PSCs simulated on the PV array. Thus, the energy efficiency of PV array controlled with the proposed PESC scheme will increase with more than 1.2% in comparison with that obtained with the other MPP algorithms because of better performance shown by this PESC scheme. A 99.6% tracking accuracy is obtained here in comparison with a maximum 98.4% tracking accuracy reported in the literature. Furthermore, 100% hit and high search speed are obtained here for the GMPP localization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper details an investigation into the appearance of hot‐spots in two large grid‐connected photovoltaics (PV) plants, which were detected after the visual inspection of trackers whose energy output was decreasing at anomalous rate. Detected hot‐spots appeared not only in the solar cells but also in resistive solder bonds (RSB) between cells and contact ribbons. Both types cause similar irreversible damage to the PV modules, but the latter are the main responsible for the detected decrease in energy output, which was confirmed in an experimental testing campaign. The results of this investigation, for example, how hot‐spots were detected or their impact on the output power of PV modules, may be of interest for the routine maintenance of large grid‐connected PV plants. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The strong growth of the PV market is accompanied by an increasing number of “new” PV technologies and concepts now mature for commercialization. A correct calibration of these devices is in some cases very difficult, because indoor and outdoor performance measurements often lead to different results. In this paper we compare the indoor and outdoor performance measurements of a set of recent commercially available PV modules (conventional and high‐efficiency c‐Si, single‐, double‐, and triple‐junction thin film (TF) technologies) and we observe that the maximum power Pmax of some devices measured indoors using our large area pulsed solar simulator is usually lower than the power measured outdoors under natural sunlight. The major effects which lead to these discrepancies are identified, as follows: (a) spectral mismatch errors, very significant for CdTe, and all a‐Si TF technologies; (b) measurement‐related sweep‐time effects, which seem to strongly influence the performance of high efficiency c‐Si devices and to a lesser extend of all a‐Si TF technologies; and (c) short‐time light‐soaking effects, which influence the performance of CIS and to a lesser extent CdTe. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Long‐term reliability and durability of recently installed photovoltaic (PV) systems are currently unclear because they have so far only been operated for short periods. Here, we investigated the quality of six types of recent crystalline silicon PV modules to study the viability of PV systems as dispersed power generation systems under operating conditions connected to an electric power grid. Three indicators were used to estimate the annual degradation rates of the various crystalline silicon PV modules: energy yield, performance ratio, and indoor power. Module performance was assessed both with indoor and outdoor measurements using electric measurements taken over a 3‐year period. The trends in the results of the three indicators were almost consistent with each other. Although the performance of the newly installed PV modules decreased by over 2% owing to initial light‐induced degradation immediately after installation, little to no degradation was observed in all the PV modules composed of p‐type solar cells over a 3‐year operation period. However, the PV modules composed of n‐type solar cells clearly displayed performance degradation originating from the reduction of open‐circuit voltage or potential‐induced degradation. The results indicate that a more continuous and detailed outdoor actual investigation is important to study the quality of new, high‐efficiency solar cells, such as heterojunction, interdigitated back contact solar cells, and passivated emitter rear cells, which are set to dominate the PV markets in the future. © 2017 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.  相似文献   

20.
Crystalline silicon photovoltaic (PV) modules are often stated as being the most reliable element in PV systems. This presumable high reliability is reflected by their long power warranty periods. In agreement with these long warranty times, PV modules have a very low total number of returns, the exceptions usually being the result of catastrophic failures. Up to now, failures resulting from degradation are not typically taken into consideration because of the difficulties in measuring the power of an individual module in a system. However, lasting recent years PV systems are changing from small isolated systems to large grid‐connected power stations. In this new scenario, customers will become more sensitive to power losses and the need for a reliability model based on degradation may become of utmost importance. In this paper, a PV module reliability model based on degradation studies is presented. The main analytical functions of reliability engineering are evaluated using this model and applied to a practical case, based on state‐of‐the‐art parameters of crystalline silicon PV technology. Relevant and defensible power warranties and other reliability data are obtained with this model based on measured degradation rates and time‐dependent power variability. In the derivation of the model some assumptions are made about the future behaviour of the products—i.e. linear degradation rates—although the approach can be used for other assumed functional profiles as well. The method documented in this paper explicitly shows manufacturers how to make reasonable and sensible warranty projections. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号