首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In the rotating/compressing/expanding mold (RCEM), one mold wall can expand, compress, and rotate during injection molding, thus offering opportunities to control the thermomechanical history of a polymer and its microstructure. A computer simulation of flow and fiber orientation in RCEM was developed. The predictive model extends the generalized Hele‐Shaw formulation to account for compression/expansion and rotation of the mold wall, and uses the Folgar–Tucker model for fiber orientation predictions. A 20% GF polypropylene was molded under various molding conditions. The predicted fiber orientation distributions were compared with experiments. The model compares favorably with experiments, provided that the fiber orientation equation is modified by a strain‐reduction factor that slows the transient development of fiber alignment. The effect of fountain flow on orientation must also be included to correctly predict fiber orientation near the mold walls, mainly for the case of stationary and linear motions of the mold surface. Compression or expansion of the mold has only a small effect on fiber orientation, but rotation of the mold dramatically changes the orientation, causing fibers to align in the tangential direction across the entire thickness of the molding. This rotation action perturbs the fountain flow and becomes the dominant factor affecting fiber alignment across the entire cavity thickness. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

2.
Fiber‐reinforced thermoplastic for low weight application become increasingly important for many industrial branches. During the injection molding of short fiber‐reinforced thermoplastic parts the fibers become orientated. This orientation is determined on the one hand by the geometry of the part, and on the other hand by the injection molding parameters, and influence the mechanical behavior of the part. The determination of the fiber properties that is, the orientation distribution of the fibers, is therefore of considerable interest. Since a more accurate fiber orientation prediction of the injection molding simulation will lead to a more precise structural simulation the objective of the present work is to achieve a preferably accurate orientation distribution. To describe the orientation distribution of the fibers, the fiber orientation tensor defined by Advani and Tucker (Advani and Tucker, Journal of Rheology, 31, 751 (1987)) was used. To determine the entries of this tensor micro computed tomography scans (μCT‐scans) of an injection‐molded plate, as well as an injection‐molded specimen with different cross section and shape were performed. Injection molding simulation using Autodesk Moldflow Insight were carried out. The residual strain closure (RSC) model was the underlying model to depict the fiber orientation distribution, or rather the orientation tensors. The two model parameters, the fiber interaction coefficient Ci and the scalar factor κ , were adapted by an optimization procedure, in such a way that the orientation distributions of the simulations fit the results of the μCT‐analysis at its best. POLYM. ENG. SCI., 59:E152–E160, 2019. © 2018 Society of Plastics Engineers  相似文献   

3.
Fiber orientation induced by injection mold filling of short-fiber-reinforced thermoplastics (FRTP) causes anisotropy in material properties and warps molded parts. Predicting fiber orientation is important for part and mold design to produce sound molded parts. A numerical scheme is presented to predict fiber orientation in three-dimensional thin-walled molded parts of FRTP. Folgar and Tucker's orientation equation is used to represent planar orientation behavior of rigid cylindrical fibers in concentrated suspensions. The equation is solved about a distribution function of fiber orientation by using a finite difference method with input of velocity data from a mold filling analysis. The mold filling is assumed to be nonisothermal Hele-Shaw flow of a non-Newtonian fluid and analyzed by using a finite element method. To define a degree of fiber orientation, an orientation parameter is calculated from the distribution function against a typical orientation angle. Computed orientation parameters were compared with measured thermal expansion coefficients for molded square plates of glass-fiber-reinforced polypropylene. A good correlation was found.  相似文献   

4.
In discontinuous fiber-reinforced composites, the shear strength at the fiber–matrix interface plays an important role in determining the reinforcing effect. In this paper, a method was devised to accurately determine this shear strength, taking the strength distribution of glass fiber into consideration. Calculated strength values based on the shear strenght obtained by the method were in better agreement with the experimental observations than those calculated by employing the shear strength obtained on the assumption that the fiber strength was uniform. The tensile strength of composites increases with increasing aspect ratio of the reinforcing fibers. This trend is almost the same regardless of the kind of matrix, the nature of interfacial treatment, and the environmental temperature. When composites are reinforced with random-planar orientation of short glass fibers of 1.5 times the mean critical fiber length, the tensile strength of composite reaches about 90% of the theoretical strength of composites reinforced with continuous glass fiber. Reinforcing with glass fibers 5 times the critical length, the tensile strength reaches about 97% of theoretical. However, from a practical point of view, it is adequate to reinforce with short fibers of 1.5–2.0 times the mean critical fiber lenght.  相似文献   

5.
The incorporation of natural fibers with polymer matrix composites (PMCs) has increasing applications in many fields of engineering due to the growing concerns regarding the environmental impact and energy crisis. The objective of this work is to examine the effect of fiber orientation and fiber content on properties of sisal‐jute‐glass fiber‐reinforced polyester composites. In this experimental study, sisal‐jute‐glass fiber‐reinforced polyester composites are prepared with fiber orientations of 0° and 90° and fiber volume of sisal‐jute‐glass fibers are in the ratio of 40:0:60, 0:40:60, and 20:20:60 respectively, and the experiments were conducted. The results indicated that the hybrid composites had shown better performance and the fiber orientation and fiber content play major role in strength and water absorption properties. The morphological properties, internal structure, cracks, and fiber pull out of the fractured specimen during testing are also investigated by using scanning electron microscopy (SEM) analysis. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42968.  相似文献   

6.
建立了基于聚合物Carreau 4参数模型和纤维取向模型相耦合的数学模型,采用有限体积法和有限差分法相结合的方法对模型控制方程组进行了数值离散。通过对4∶1平板收缩腔内的纤维悬浮非等温聚合物流动的数值模拟,得到了流场的温度和黏度分布规律,并分析了不同温度对纤维取向和流场应力的影响。结果表明:较低的温度不仅有助于纤维的旋转取向,还有助于熔体黏弹性能的提高。该数学模型能够用于纤维增强聚合物复合材料加工过程的性能分析。  相似文献   

7.
Two types of long jute fiber pellet consisting of twisted‐jute yarn (LFT‐JF/PP) and untwisted‐jute yarn (UT‐JF/PP) pellets are used to prepare jute fiber–reinforced polypropylene (JF/PP) composites. The mechanical properties of both long fiber composites are compared with that of re‐pelletized pellet (RP‐JF/PP) of LFT‐JF/PP pellet, which is re‐compounded by extrusion compounding. High stiffness and high impact strength of JF/PP composites are as a result of using long fiber. However, the longer fiber bundle consequently affects the distribution of jute fiber. The incorporation of 10 wt % glass fibers is found to improve mechanical properties of JF/PP composites. Increasing mechanical properties of hybrid composites is dependent on the type of JF/PP pellets, which directly affect the fiber length and fiber orientation of glass fiber within hybrid composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41819.  相似文献   

8.
The fatigue behavior of long fiber reinforced nylon 66 has been investigated by measuring fatigue crack propagation rates of injection molded samples. Plaques varying in thickness from 3 to 10 mm were employed for nylong 66 containing either glass, carbon or aramid fibers. Both conventional chopped, short fiber reinforcements and pultruded long fiber filled nylon 66 were examined. Long fiber reinforced nylon 66 exhibits improved fatigue resistance as shown by decreases in fatigue crack propagation rates compared to short fiber filled composites. Using a fracture mechanics analysis, it is shown that the improvements are due primarily to the higher moduli of the long fiber reinforced nylon 66, with only a slight increase in the calculated strain energy release rate associated with fatigue crack growth. For short or long glass fibers, and for short carbon fibers, the effects of fiber orientation on fatigue crack growth rates can be predicted from the fracture mechanics model. More significant effects of fiber length on fatigue fracture energies are noted for long aramid and long carbon reinforced nylon 66. It is also shown that thicker plaques can exhibit poorer fatigue fracture behavior owing to their inferior core sections.  相似文献   

9.
We report non-conducting aerosol fiber (i.e., glass fiber) alignment in a DC electric field. Direct observation of fiber orientation state is demonstrated and quantitative analysis of fiber alignment is made using phase contrast microscopy in four different conditions: (i) dry air and naturally charged fibers, (ii) humid and naturally charged, (iii) humid and neutralized (Boltzmann charge distribution), and (iv) humid and neutralized with an electrostatic precipitator upstream electrodes (i.e., non-charged). The glass fiber aerosols generated by a vortex shaking method were conditioned using a Po-210 neutralizer or humidifier and were provided into a test unit where cylindrical or parallel plate electrodes are used and high voltage is applied to them. Fibers were collected on a filter immediately downstream from the electrodes and their images were taken through an optical microscope to visualize the fiber orientation and measure the alignment angles and lengths of the fibers. The results showed that under all four conditions tested, airborne glass fibers could be aligned to the electric field with different alignment quality, indicating that the glass fibers can be polarized in a steady electric field. In humid air, the fiber alignment along the field direction was observed to be much better and the number of uniform background particles (i.e., randomly oriented fibers) in angular distributions is smaller than that in dry air. Also, it was found that charged fibers in humid air could be better aligned with negligible uniform background than neutralized and non-charged fibers. Possible mechanisms about humidity and charge effects on enhanced fiber alignment are discussed to support the observations. The results indicate that the enhancement of alignment in an electric field would be possible in humid air for other non-conducting fibrous particles having surface chemistry similar to glass fibers.  相似文献   

10.
Poly (ε‐caprolactone) fibers were prepared by dry‐spinning method. The effect of processing parameters on linear density, mechanical, and morphological properties of fibers was investigated using the response surface methodology (RSM). This method allowed evaluating a quantitative relationship between polymer concentrations, spinning speed, and draw ratio on the properties of the fibers. Polynomial regression model was fitted to the experimental data to generate predicted response. The results were subjected to analysis of variance to determine significant parameters. It was found that all three parameters had significant effect on linear density of fibers. Combined effect of concentration and spinning speed was observed in which the linear density of fiber was more sensitive to changes in the solution concentration at lower spinning speed. Polymer concentration had the largest influence on the mechanical properties of fibers. An average cross‐sectional radius of fibers was affected by concentration and draw ratio in opposite manner. Among all three parameters, only polymer concentration had significant effect on circularity of fiber cross sections. By applying the RSM, it was possible to obtain a mathematical model that can be used to better define processing parameters to fabricate dry‐spun PCL fiber in a more rational manner. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42113.  相似文献   

11.
The damage of glass fibers at various conditions was investigated in a corotating twin screw extruder by varying viscosity, screw speed, and screw configuration. Increasing the screw speed and melt matrix viscosity were found to increase the extent of fiber breakage. Based on the experimental data and Euler buckling theory, a composite modular kinetic model to describe glass fiber breakage was developed. Regions of the major and minor fiber breakage in a corotating twin screw extruder were found. The simulation program based on the experimental data and kinetic constants was developed for fiber breakage along the screw length. Comparisons were made between simulated results and experimental data indicating a reasonable quantitative agreement between them. Predictions of the model are also in general qualitative agreement with many published data on fiber breakage in twin screw extruders. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

12.
13.
Kevlar and glass fibers were used to reinforce linear low density polyethylene (LLDPE), and composite sheets of 0.8, 1.5 and 2.5 mm thicknesses were obtained by using a compression molding technique. Dynamic viscoelastic properties of non‐hybrid and hybrid composites of various compositions at 200°C are evaluated. Storage modulus (G′) and loss modulus (G″) increase with angular frequency (ω) and reinforcement. Replacement of glass fiber by Kevlar at constant loading of fibers in LLDPE increases the value of G′, G″ and η′. The fractured surface of composite shows the gradient orientation of fibers particularly in 2.5 mm thick sheet. Top and bottom layers show relatively two‐dimensional orientation as compared to the middle layer, which shows random orientation. The orientation of fibers decreases G′ and η′ of Kevlar fiber and hybrid fiber hybrid fiber reinforced LLDPE composites. The effect of change in distance between parallel plate of rheometer (change in strain amplitude) on dynamic rheological properties is studied and reported here.  相似文献   

14.
In the automotive industry, glass‐filled thermoplastics are used in air intake manifolds, radiator tanks, and many other parts. However, widespread application of glass‐filled thermoplastic materials has been limited in many cases by the inability to accurately predict performance and durability. Since a more accurate fiber orientation prediction will lead to more accurate local mechanical property predictions, this work investigated a recently proposed mathematic model of fiber suspension rheology, which considers the anisotropic fiber diffusion and fiber–matrix interaction from a microscopic viewpoint. The new model proved able to predict many details of the fiber orientation distribution and could be applied advantageously as part of the product and manufacturing development processes. POLYM. COMPOS., 35:671–680, 2014. © 2013 Society of Plastics Engineers  相似文献   

15.
短纤维增强熔体三维充模模拟及制品性能预测   总被引:1,自引:0,他引:1       下载免费PDF全文
文艳  欧阳洁  周文 《化工学报》2013,64(9):3102-3109
基于气-液-固三相模型,给出了适用于三维流场的纤维质心虚拟速度、纤维平动与取向、动量交换源项的求解公式,建立了描述短纤维增强聚合物熔体充模过程的三维模型。采用同位网格有限体积法和Level Set界面追踪技术,实现了充模过程的三维动态模拟。并且,根据模拟计算出的平均取向角,提出了三维取向短纤维增强复合材料力学性能参数计算的一种简化模型。数值结果表明:三维模拟技术可有效反映注塑成型充模的流动过程和喷泉效应;纤维取向分析可量化显示纤维在型腔中的表层-芯层结构取向;弹性模量计算结果与实验结果吻合较好。  相似文献   

16.
We examine the applicability of the conformation tensor to describe the fiber orientation and rheology of moderately concentrated fiber-filled thermoplastics subjected to large deformation flow. To retain computational simplicity, we assume a Newtonian matrix. We present a model that can account for orientation effects, Brownian motion, semiflexibility, and interactions through excluded volume effect, of the fibers. The model predicts a wide variety of rheological effects. We present predictions of steady shear viscosity, primary normal stress and the creep functions, as well as uniaxial elongational viscosity, due to the fibers. We have compared rheological data for 9.54 wt% carbon fibers in polyethylene and 30 wt% glass fibers in polypropylene, with the model predictions. By defining an “effective fiber concentration,” we have been able to correlate the model well with data. With fitting parameters from the steady state viscosity vs. shear rate data, we have been able to predict the steady state primary stress coefficient data as well as the creep data.  相似文献   

17.
Orientation of reinforcement fibers in injection molded parts is a key factor in determining their strength and stiffness: therefore stress-strain analyses based on isotropic material models produce only rough results. We present a flow/strain analysis methodology that accounts for the actual anisotropic material properties and fiber orientation. Material properties are determined by experiment, fiber orientation is inferred from flow simulation results (velocity vectors). Stress/strain fields are calculated by means of finite element analysis. Results show that for notched parts molded from short glass reinforced polyamide resin, there is a significant dependence of the strain concentration on the local fiber orientation resulting from different injection molding conditions.  相似文献   

18.
Nylon‐6,6 was grafted onto the surface of short glass fibers through the sequential reaction of adipoyl chloride and hexamethylenediamine onto the fiber surface. Grafted and unsized short glass fibers (USGF) were used to prepare composites with nylon‐6,6 via melt blending. The glass fibers were found to act as nucleating agents for the nylon‐6,6 matrix. Grafted glass fiber composites have higher crystallization temperatures than USGF composites, indicating that grafted nylon‐6,6 molecules further increase crystallization rate of composites. Grafted glass fiber composites were also found to have higher tensile strength, tensile modulus, dynamic storage modulus, and melt viscosity than USGF composites. Property enhancement is attributed to improved wetting and interactions between the nylon‐6,6 matrix and the modified surface of glass fibers, which is supported by scanning electron microscopy (SEM) analysis. The glass transition (tan δ) temperatures extracted from dynamic mechanical analysis (DMA) are found to be unchanged for USGF, while in the case of grafted glass fiber, tan δ increases with increasing glass fiber contents. Moreover, the peak values (i.e., intensity) of tan δ are slightly lower for grafted glass fiber composites than for USGF composites, further indicating improved interactions between the grafted glass fibers and nylon‐6,6 matrix. The Halpin‐Tsai and modified Kelly‐Tyson models were used to predict the tensile modulus and tensile strength, respectively.  相似文献   

19.
A 58% (by weight) long glass fiber reinforced (LGF)‐HDPE master batch was blended with a typical blow molding HDPE grade. HDPE composites having between 5% and 20% (by weight) long fiber content were extruded at different processing conditions (extrusion speed, die gap, hang time). The parison swell (diameter and thickness) decreased with increasing fiber content. Although the HDPE exhibited significant shear rate dependence, the LGF/HDPE composites were shear rate insensitive. Both the diameter and weight swell results also indicated very different sagging behavior. The LGF/HDPE parisons did sag as a solid‐body (equal speed at different axial locations) governed by the orientation caused by the flow in the die. Samples taken from blown bottles showed that fiber lengths decreased to 1‐3 mm, from the original 11 mm fiber length fed to the extruder. No significant difference in fiber length distribution was found when samples for different regions of the bottle were analyzed. SEM micrographs corroborate the absence of fiber segregation and clustering or the occurrence of fiber bundles (homogeneous spatial fiber distribution) as well as a preferential fiber orientation with the direction of flow. The blowing step did not change the orientation of the fibers. Five‐percent (5%) and 10% LGF/HDPE composites could be blown with very slight variations to the neat HDPE inflation conditions. However, 20% LGF/HDPE composites could not be consistently inflated. Problems related to blowouts and incomplete weldlines were the major source of problems.  相似文献   

20.
Long‐flexible fiber orientation under the influence of a flow field is an important engineering problem. One can encounter this problem in many fields. For example in fiber reinforced thermoplastics produced in both injection and compression molding, fiber orientation affect final part properties. Fiber orientation models are constructed for short fibers in a simple shear flow case and though this case is important it is not the general case. In this work we extract rotational friction coefficients from Jeffery's model, create a general case long‐flexible fiber orientation model, and apply it in a simple shear flow. POLYM. COMPOS., 37:2425–2433, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号