首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,3‐Diazido‐2‐nitro‐2‐azapropane (DANP) and 1,7‐diazido‐2,4,6‐trinitro‐2,4,6‐triazaheptane (DATH) were synthesized, thoroughly analyzed, and their explosive properties and sensitivities toward friction and impact were measured. The precursors 1,3‐diacetoxy‐2‐nitro‐2‐azapropane ( 1 ), 1,3‐dichloro‐2‐nitro‐2‐azapropane ( 3 ), and 1,7‐dichloro‐2,4,6‐trinitro‐2,4,6‐triazaheptane ( 4 ) – as well as DATH – were furthermore characterized by X‐ray diffraction.  相似文献   

2.
1‐Azido‐2‐nitro‐2‐azapropane ( 1 ) was synthesized in high yield from 1‐chloro‐2‐nitro‐2‐azapropane and sodium azide. 1‐Nitrotetrazolato‐2‐nitro‐2‐azapropane ( 2 ) was synthesized in high yield from 1‐chloro‐2‐nitro‐2‐azapropane and silver nitrotetrazolate. The highly energetic new compounds ( 1 and 2 ) were characterized using vibrational (IR and Raman) and multinuclear NMR spectroscopy (1H, 13C, 14N), elemental analysis and low‐temperature single crystal X‐ray diffraction. 1‐Azido‐2‐nitro‐2‐azapropane ( 1 ) represents a covalently bound liquid energetic material which contains both a nitramine unit and an azide group in the molecule. 1‐Nitrotetrazolato‐2‐nitro‐2‐azapropane ( 2 ) is a covalently bound room‐temperature stable solid which contains a nitramine group and a nitrotetrazolate ring unit in the molecule. Compounds 1 and 2 are hydrolytically stable at ambient conditions. The impact sensitivity of compound 1 is very high (<1 J) whereas compound 2 is less sensitive (<6 J).  相似文献   

3.
A new primary explosive, the silver salt of 4,6‐diazido‐N‐nitro‐1,3,5‐triazine‐2‐amine (AgDANT), was synthesized and characterized. AgDANT was prepared with a 97 % yield and characterized by IR spectroscopy, single‐crystal X‐ray diffraction, and DTA. The crystal density of AgDANT is 2.530 g cm−3 and the molecule consists of a centro‐symmetric dimer with a high degree of planarity. The intramolecular Ag Ag distance is relatively low (331 pm) and can be considered as a strong argentophilic interaction. AgDANT is non‐hygroscopic and its solubility in water (1.27 mg in 100 mL at 23 °C) is on a similar level of solubility to that of silver azide. The sensitivity of AgDANT to impact is slightly higher than that for MF, sensitivity to friction is the same as for LA, and sensitivity to electric discharge is between that for LS and MF. Initiation efficiency of AgDANT was tested in electric detonators and compared to dextrinated lead azide (initiation efficiency of AgDANT is 40 mg for PETN secondary charge). The thermal resistance of detonators with AgDANT is satisfactory; all detonators were fully functional after exposure at 65 °C (30 d) and 85 °C (2 d).  相似文献   

4.
A new class of nitro‐functionalized α,β‐unsaturated esters has been prepared by a regio‐ and diastereoselective Michael addition of nitroalkanes to β‐nitroacrylates, performed at room temperature, under carbonate on polymer as promoter, and in the presence of ethyl acetate as eco‐friendly solvent. Moreover, by the modular choice of the reaction conditions the method allows the synthesis of 1,3‐butadiene‐2‐carboxylates.  相似文献   

5.
A facile highly regioselective process is described for the formation of 4‐chloromethyl‐1,3‐oxazoles from 1,3‐oxazole N‐oxide/HCl salts. An explanation is presented for the high regioselectivity in deoxygenation‐chlorination using POCl3 with HCl salts compared to the corresponding free N‐oxides. The method is quite general and the products are isolated by direct precipitation in all cases studied.  相似文献   

6.
Some thermodynamic and explosive properties of the recently reported 1‐azido‐2‐nitro‐2‐azapropane (ANAP) have been determined in a combined computational ab initio (MP2/aug‐cc‐pVDZ) and EXPLO5 (Becker–Kistiakowsky–Wilson's equation of state, BKW EOS) study. The enthalpy of formation of ANAP in the liquid phase was calculated to be ΔfH°, ANAP(l)=+297.1 kJ mol−1. The heat of detonation (Qv), the detonation pressure (P), and the detonation velocity of ANAP were calculated to be Qv=−6088 kJ kg−1, P=23.8 GPa, D=8033 m s−1. A mixture of ANAP and tetranitromethane (TNM) was investigated in an attempt to tailor the impact sensitivity of ANAP, but results obtained indicate that the mixture is almost as sensitive as pure ANAP. On the other hand, ANAP and TNM were found to be chemically compatible (1H, 13C, 14N NMR; DSC) and a 1 : 1 mixture (by weight) of both components was calculated to have superior explosive properties than either of the individual components: Qv=−6848 kJ kg−1, P=27.0 GPa, D=8284 m s−1.  相似文献   

7.
The heat effects of the nitration and dissolution processes of 1,2,4‐triazol‐5‐one (TO) in acidic environments were measured by differential reaction calorimetry. The kinetics of nitration of TO in a 200‐mL reactor were investigated by UV/Vis spectroscopy. Temperature changes were measured in a 10‐L batch reactor during the TO nitration. A model of kinetics for the synthesis of 3‐nitro‐1,2,4‐triazol‐5‐one (NTO) was proposed and it was used to simulate the phenomena occurring in the calorimeter and in the reactors. The experimental data were compared with modeling results and parameters of the Arrhenius equation for synthesis of NTO with selected nitration mixtures were determined.  相似文献   

8.
2‐Acetyl‐4,6,8,10,12‐pentanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane (PNAIW) is formed in the last step of nitration of acetyl isowurtzitane derivatives. The amount of the PNAIW formed depends on the conditions of the nitration reaction (temperature, time, and nitrating mixture used) and on the type of the starting acetyl intermediate. The highest PNAIW yields (30 %) were obtained by nitrating 2,6,8,12‐tetraacetylhexaazaisowurtzitane (TAIW) at 60 °C for half an hour using HNO3/H2SO4 nitrating mixture. HPLC, NMR, FTIR, and DSC measurements were used in the study and their results are reported.  相似文献   

9.
The heterofunctional condensation of 1,3‐dichloro‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane with dihydroxydiphenylsilane at various ratios of initial compounds in the presence of amines was carried out, and α,ω‐dihydroxy(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane)‐diphenylsiloxane oligomers with various degrees of condensation were obtained. Corresponding block copolymers were obtained by heterofunctional polycondensation of synthesized α,ω‐dihydroxy(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane)‐diphenylsiloxane oligomers with α,ω‐dichlorodimethylsiloxanes in the presence of amines. Thermogravimetry, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray analysis were carried out on the synthesized block coplymers. Differential scanning calorimetry and wide‐angle X‐ray studies of these copolymers showed that their properties were determined by the ratio of the lengths of the flexible linear poly(dimethylsiloxane) and rigid poly(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane)‐diphenylsiloxane fragments in the main macromolecular chain. Two‐phase systems were obtained with specific flexible and rigid fragment length values in synthesized block copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3462–3467, 2006  相似文献   

10.
The hydrolytic condensation of 1,3‐dichloro‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane under neutral conditions produced α'ω‐dihydroxy‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane (polymerization degree ≈ 4). The homofunctional condensation of α'ω‐dihydroxy‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane in a toluene solution and in the presence of activated carbon was performed, and dihydroxy‐containing oligomers with various degrees of condensation were obtained. Through the heterofunctional condensation of dihydroxy‐containing oligomers with α'ω‐dichlorodimethylsiloxanes in the presence of amines, corresponding block copolymers were obtained. Gel permeation chromatography, differential scanning calorimetry, thermomechanical analysis, thermogravimetry, and wide‐angle roentgenography investigations were carried out. Differential scanning calorimetry and roentgenography studies of the block copolymers showed that their properties were determined by the ratio of the lengths of the flexible and linear poly(dimethylsiloxane) and rigid poly(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane) fragments in the macromolecular chain. At definite values of the lengths of the flexible and rigid fragments, a microheterogeneous structure was observed in the synthesized block copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1409–1417, 2002; DOI 10.1002/app.10335  相似文献   

11.
The energetic material, 3‐nitro‐1,5‐bis(4,4′‐dimethyl azide)‐1,2,3‐triazolyl‐3‐azapentane (NDTAP), was firstly synthesized by means of Click Chemistry using 1,5‐diazido‐3‐nitrazapentane as main material. The structure of NDTAP was confirmed by IR, 1H NMR, and 13C NMR spectroscopy; mass spectrometry, and elemental analysis. The crystal structure of NDTAP was determined by X‐ray diffraction. It belongs to monoclinic system, space group C2/c with crystal parameters a=1.7285(8) nm, b=0.6061(3) nm, c=1.6712(8) nm, β=104.846(8)°, V=1.6924(13) nm3, Z=8, μ=0.109 mm−1, F(000)=752, and Dc=1.422 g cm−3. The thermal behavior and non‐isothermal decomposition kinetics of NDTAP were studied with DSC and TG‐DTG methods. The self‐accelerating decomposition temperature and critical temperature of thermal explosion are 195.5 and 208.2 °C, respectively. NDTAP presents good thermal stability and is insensitive.  相似文献   

12.
2‐tert‐Butylimino‐2‐diethylamino‐1,3‐dimethylperhydro‐1,3,2‐diazaphosphorine supported on polystyrene (PS‐BEMP) is an efficient catalyst for the addition of nitroalkanes (1–1.5 equiv.) to α,β‐unsaturated carbonyl compounds (1.0 equiv.) in the absence of a reaction medium (solvent‐free conditions). The corresponding γ‐nitro carbonyl compounds have been isolated in excellent yields but the catalyst can be satisfactorily recovered and used for only 3 times due to the magnetic stirring which caused crunching of the catalyst beads thus hampering its complete recovery. To optimize the catalyst’s reuse and improve the environmental efficacy of solvent‐free conditions, the first solvent‐free cyclic continuous‐flow reactor has been set up. This reactor has allowed the product to be isolated in an almost quantitative yield by using a very small amount of organic solvent, making the recovery and reuse of the catalyst efficient and reproducible.  相似文献   

13.
BACKGROUND: 1,3‐1,4‐β‐D‐glucanase (1,3‐1,4‐β‐D‐glucan 4‐glucanohydrolase; EC 3.2.1.73) has been used in a range of industrial processes. As a biocatalyst, it is better to use immobilized enzymes than free enzymes, therefore, the immobilization of 1,3‐1,4‐β‐D‐glucanase was investigated. RESULTS: A 1,3‐1,4‐β‐D‐glucanase gene from Fibrobacter succinogenes was overexpressed in Escherichia coli as a recombinant protein fused to the N terminus of oleosin, a unique structural protein of seed oil bodies. With the reconstitution of the artificial oil bodies (AOBs), refolding, purification, and immobilization of active 1,3‐1,4‐β‐D‐glucanase was accomplished simultaneously. Response surface modeling (RSM), with central composite design (CCD), and regression analysis were successfully applied to determine the optimal temperature and pH conditions of the AOB‐immobilized 1,3‐1,4‐β‐D‐glucanase. The optimal conditions for the highest immobilized 1,3‐1,4‐β‐D‐glucanase activity (7.1 IU mg?1 of total protein) were observed at 39 °C and pH 8.8. Furthermore, AOB‐immobilized 1,3‐1,4‐β‐D‐glucanase retained more than 70% of its initial activity after 120 min at 39 °C, and it was easily and simply recovered from the surface of the solution by brief centrifugation; it could be reused eight times while retaining more than 80% of its activity. CONCLUSIONS: These results indicate that the AOB‐based system is a comparatively simple and effective method for simultaneous refolding, purification, and immobilization of 1,3‐1,4‐β‐D‐glucanase. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
The gold(III)‐catalyzed sequential amination/annulation reaction of 2‐propynyl‐1,3‐dicarbonyl compounds 1 with primary amines 2 produces 1,2,3,5‐substituted pyrroles 4 in moderate to high yields.  相似文献   

15.
4,6‐Diazido‐N‐nitro‐1,3,5‐triazine‐2‐amine (DANT) was prepared with a 35 % yield from cyanuric chloride in a three step process. DANT was characterized by IR and NMR spectroscopy (1H, 13C, 15N), single‐crystal X‐ray diffraction, and DTA. The crystal density of DANT is 1.849 g cm−3. The cyclization of one azido group and one nitrogen atom of the triazine group giving tetrazole was observed for DANT in a dimethyl sulfoxide solution using NMR spectroscopy. An equilibrium exists between the original DANT molecule and its cyclic form at a ratio of 7 : 3. The sensitivity of DANT to impact is between that for PETN and RDX, sensitivity to friction is between that for lead azide and PETN, and sensitivity to electric discharge is about the same as for PETN. DANT′s heat of combustion is 2060 kJ mol−1.  相似文献   

16.
The presence of a bulky substituent at the 2‐position of 1,3‐butadiene derivatives is known to affect the polymerization behavior and microstructure of the resulting polymers. Free‐radical polymerization of 2‐triethoxysilyl‐1,3‐butadiene ( 1 ) was carried out under various conditions, and its polymerization behavior was compared with that of 2‐triethoxymethyl‐ and other silyl‐substituted butadienes. A sticky polymer of high 1,4‐structure ( ) was obtained in moderate yield by 2,2′‐azobisisobutyronitrile (AIBN)‐initiated polymerization. A smaller amount of Diels–Alder dimer was formed compared with the case of other silyl‐substituted butadienes. The rate of polymerization (Rp) was found to be Rp = k[AIBN]0.5[ 1 ]1.2, and the overall activation energy for polymerization was determined to be 117 kJ mol?1. The monomer reactivity ratios in copolymerization with styrene were r 1 = 2.65 and rst = 0.26. The glass transition temperature of the polymer of 1 was found to be ?78 °C. Free‐radical polymerization of 1 proceeded smoothly to give the corresponding 1,4‐polydiene. The 1,4‐E content of the polymer was less compared with that of poly(2‐triethoxymethyl‐1,3‐butadiene) and poly(2‐triisopropoxysilyl‐1,3‐butadiene) prepared under similar conditions. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
A general and efficient method for the synthesis of oxazolidin‐2‐ones and imidazolidin‐2‐ones directly from 1,3‐diols and 3‐amino alcohols has been developed using the same reagent combination of iodobenzene dichloride (PhICl2) and sodium azide (NaN3).

  相似文献   


18.
A new method for the stereoselective synthesis of highly substituted (1E,3E)‐2‐sulfonyl‐1,3‐dienes from N‐propargylic sulfonohydrazone derivatives has been developed via copper(I)‐catalyzed [3,3] rearrangement and highly regioselective migration of the sulfonyl group.  相似文献   

19.
A novel and efficient formation of 2‐iminobenzo‐1,3‐oxathioles from readily available precursors via a copper(I)‐catalyzed one‐pot cascade process has been developed. Various 2‐iminobenzo‐1,3‐oxathioles, which might be useful in pharmaceutical and biochemical areas, were conveniently synthesized in good to excellent yields.  相似文献   

20.
Regio‐ and stereoselective reductions of α‐substituted 1,3‐diketones to the corresponding β‐keto alcohols or 1,3‐diols by using commercially available ketoreductases (KREDs) are described. A number of α‐monoalkyl‐ or dialkyl‐substituted symmetrical as well as non‐symmetrical diketones were reduced in high optical purities and chemical yields, in one or two enzymatic reduction steps. In most cases, two or even three out of the four possible diastereomers of α‐alkyl‐β‐keto alcohols were synthesized by using different enzymes, and in two examples both ketones were reduced to the 1,3‐diol. By replacing the α‐alkyl substituent with the OAc group, 1‐keto‐2,3‐diols, as well as 1,2,3‐triols were synthesized in high optical purities. These enzymatic reactions provide a simple, highly stereoselective and quantitative method for the synthesis of different diastereomers of valuable chiral synthons from non‐chiral, easily accessible 1,3‐diketones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号