首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness of the composites of polypropylene/poly(lactic acid) (PP/PLA) (70/30, wt %) with single filler of multiwall carbon nanotube (CNT) or hybrid fillers of nickel‐coated carbon fiber (CF) and CNT were investigated. For the single filler composite, higher electrical conductivity was observed when the PP‐g‐maleic anhydride was added as a compatibilizer between the PP and PLA. For the composite of the PP/PLA (70/30)/CF (20 phr)/CNT (5 phr), the composite prepared by injection molding observed a higher EMI shielding effectiveness of 50.5 dB than the composite prepared by screw extrusion (32.3 dB), demonstrating an EMI shielding effectiveness increase of 49.8%. The higher values in EMI shielding effectiveness and electrical conductivity of the PP/PLA/CF (20 phr)/CNT (5 phr) composite seemed mainly because of the increased CF length when the composites were prepared using injection molding machine, compared with the composites prepared by screw extrusion. This result suggests that the fiber length of the conductive filler is an important factor in obtaining higher values of electrical conductivity and EMI shielding effectiveness of the PP/PLA/CF/CNT composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45222.  相似文献   

2.
A novel nitrile butadiene rubber (NBR)/magnetite (Fe3O4) nanocomposite for electromagnetic interference (EMI) shielding at microwave frequency was successfully fabricated. The structural features of as-synthesized magnetite and NBR/Fe3O4 were examined by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The number of elastically effective chains, volume fraction of rubber, interparticle distance among conductive sites, polymer–filler interaction, and porosity of the nanocomposites were evaluated. The mechanical properties, including the tensile strength, elongation at break, and hardness, of the composites were measured. The static electrical properties, such as the electrical conductivity, carrier mobility, and number of charge carriers, as a function of magnetite content were evaluated. The interrelation between the electrical conductivity, shielding effectiveness (SE), dielectric constant, and skin depth of the composites are discussed. Finally, the EMI SE versus frequency was tested. The results reveal that an SE of 28–91 dB against EMI in the 1–12 GHz range depended on the loading of the conducting magnetite within the NBR matrix. Accordingly, these nanocomposites may used in the field of microwave absorption devices. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
This study has reported the preparation of polycarbonate (PC)/graphene nanoplate (GNP)/multiwall carbon nanotube (MWCNT) hybrid composite by simple melt mixing method of PC with GNP and MWCNT at 330°C above the processing temperature of the PC (processing temperature is 280°C) followed by compression molding. Through optimizing the ratio of (GNP/MWCNT) in the composites, high electromagnetic interference shielding effectiveness (EMI SE) value (∼21.6 dB) was achieved at low (4 wt%) loading of (GNP/MWCNT) and electrical conductivity of ≈6.84 × 10−5 S.cm−1 was achieved at 0.3 wt% (GNP/MWCNT) loading with low percolation threshold (≈0.072 wt%). The high temperature melt mixing of PC with nanofillers lowers the melt viscosity of the PC that has helped for better dispersion of the GNPs and MWCNTs in the PC matrix and plays a key factor for achieving high EMI shielding value and high electrical conductivity with low percolation threshold than ever reported in PC/MWCNT or PC/graphene composites. With this method, the formation of continuous conducting interconnected GNP‐CNT‐GNP or CNT‐GNP‐CNT network structure in the matrix polymer and strong π–π interaction between the electron rich phenyl rings and oxygen atom of PC chain, GNP, and MWCNT could be possible throughout the composites. POLYM. COMPOS., 37:2058–2069, 2016. © 2015 Society of Plastics Engineers  相似文献   

4.
Poly(vinyl chloride) (PVC)/acrylonitrile–butadiene rubber (NBR) were mixed with multiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) to prepare microwave‐absorbing composites. The complex permittivity, direct‐current (dc) conductivity, microwave‐absorbing performance, morphology, and mechanical properties of the composites were studied. The real and imaginary parts of the permittivity of the composites increased with increasing MWCNT content. The premixing of the MWCNTs with PVC was more beneficial to the dispersion of MWCNTs; this led to a higher dc conductivity and permittivity and better microwave‐absorbing performance than the premixing of MWCNTs with NBR for the PVC/NBR/MWCNT composites. The PVC/NBR/MWCNT composites had a minimum reflection loss (RLmin) of ?49.5 dB at the optimum thickness of 1.96 mm. The efficient microwave absorption of the PVC/NBR/MWCNT composites was due to a high dielectric loss and moderate permittivity. The incorporation of SiC into the PVC/NBR/MWCNT composites increased the real and imaginary parts of permittivity of the composites. When the SiC content was 70 phr, RLmin decreased to ?34.9 dB at a thickness of 3 mm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
The effect of nitric acid mild functionalized multiwalled carbon nanotubes (MWCNTs) on electromagnetic interference (EMI) shielding effectiveness (SE) of epoxy composites was examined. MWCNTs were oxidized by concentrated nitric acid under reflux conditions, with different reaction times. The dispersion of MWCNTs after functionalization was improved due to the presence of oxygen functional groups on the nanotubes surface. Functionalization at 2 h exhibits the highest EMI SE and electrical conductivity of MWCNTs filled epoxy composites. However, EMI shielding performance of MWCNTs filled epoxy composite declined when the functionalization reaction time was prolonged. This was due to extensive damage on the MWCNT structure, as verified by a Raman spectroscope. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42557.  相似文献   

6.
A facile and economic method is developed for the fabrication of new lightweight materials with high electromagnetic interference (EMI) shielding performance, good mechanical properties and low electrical percolation threshold through melt mixing. Electrical properties, DC conductivity, EMI shielding performance and mechanical properties of poly(trimethylene terephthalate) (PTT)/multiwalled carbon nanotube (MWCNT) nanocomposites with varying filler loading of MWCNTs were investigated. High‐resolution transmission electron microscopy was used to determine the distribution of MWCNTs in the PTT matrix. The newly developed nanocomposites show excellent dielectric and EMI shielding properties. Theoretical electrical percolation threshold was achieved at 0.21 wt% loading of MWCNTs, due to the high aspect ratio and the three‐dimensional network formation of MWCNTs. Experimental DC conductivity values were compared with those of theoretical models such as the Voet, Bueche and Scarisbrick models, which showed good agreement. The PTT/3% MWCNT composite showed an EMI shielding value of ~38 dB (99.99% attenuation) with a sample thickness of 2 mm. Power balance was used to determine the actual contribution of reflection, absorption and transmission loss to the total EMI shielding value. The nanocomposites showed good tensile and impact properties and the composite with 2% MWCNTs exhibited an improvement in tensile strength of as much as 96%. © 2018 Society of Chemical Industry  相似文献   

7.
In this work, we have incorporated pristine graphene and graphene sheets decorated with α and δ forms of manganese dioxide in a hydrogenated nitrile butadiene rubber matrix to obtain high-performance composites. The dual mixing technique was adopted to fabricate the composites having enhanced tensile, dielectric, and electromagnetic interference (EMI) shielding properties. The pristine graphene was introduced at various loadings, however, the α and δ manganese dioxide doped graphene was integrated at a single 8 phr concentration onto the rubber matrix. At an optimized concentration of 8 phr graphene in the matrix, a 101% increase in the tensile strength was observed compared to the unfilled rubber. An excellent improvement in the dielectric properties and a high EMI shielding value of 24.5 dB was observed for the15 phr loaded composite having a thickness of 2 mm. The composites should principally find applications as a robust and lightweight EMI shielding material.  相似文献   

8.
The effects of hybrid fillers of carbon fiber (CF) and multiwall carbon nanotube (MWCNT) on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), flame retardancy, and mechanical properties of poly(butylene terephthalate) (PBT)/poly(acrylonitrile-co-styrene-co-acrylate) (PolyASA) (70/30, wt %) with conductive filler composites were investigated. The CF was used as the main filler, and MWCNT was used as the secondary filler to investigate the hybrid filler effect. For the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite, a higher electrical conductivity (1.4 × 100 S cm−1) and EMI SE (33.7 dB) were observed than that of the composite prepared with the single filler of CF (10 vol %), which were 9.0 × 10−2 S cm−1 and 23.7 dB, respectively. This increase in the electrical properties might be due to the longer CF length and hybrid filler effect in the composites. From the results of aging test at 85 °C, 120 h, the electrical conductivity and EMI SE of the composites decreased slightly compared to that of the composite without aging. The results of electrical conductivity, EMI SE, and flame retardancy suggested that the composite with the hybrid fillers of CF and MWCNT showed a synergetic effect in the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48162.  相似文献   

9.
Calcium copper titanate (CCTO) has been synthesized by high temperature solid-state reaction from calcium carbonate, copper (II) oxide, and titanium dioxide as the starting materials. The formation and morphology of CCTO were confirmed by X-ray diffraction, Fourier-transformed infrared spectrophotometry, scanning electron microscopy (SEM), and particle size analysis. In order to develop flexible dielectric materials, acrylonitrile-butadiene rubber (NBR)-based composites were prepared with CCTO content varied from 0 to 120 phr (parts per hundred rubber). The cure characteristics of composites were assessed. High-dielectric constant CCTO particles were blended into NBR to make composites with improved dielectric constant. Results showed that the NBR/CCTO composites had a high dielectric constant (10–20) with low dielectric loss (<0.4) and low conductivity (<10−3 μS/cm) at frequencies up to 106 Hz. However, the higher CCTO loadings had agglomeration in the NBR matrix, and thus tensile strength and elongation at break sharply deteriorated due to poor rubber-filler interactions. The results showed lower storage modulus E′ and a reduction in Tg with the incorporation of CCTO in NBR matrix. Moreover, improved thermal stability of the NBR/CCTO composites was achieved. SEM was used to observe the dispersion of CCTO particles in NBR matrix.  相似文献   

10.
Multi-walled carbon nanotube (MWCNT)/polystyrene (PS) composites were injection molded into a mold equipped with three different cavities. A high alignment of MWCNTs in PS was achieved by applying high shear force to the melt. The effects of gate and runner designs and processing conditions, i.e., mold temperature, melt temperature, injection/holding pressure and injection velocity, on the volume resistivity of the composites were investigated in both the thickness and in-flow directions. The experiments showed that volume resistivity could be varied up to 7 orders of magnitude by changing the processing conditions in the injection molded samples. The electromagnetic interference shielding effectiveness (EMI SE) of the molded composites was studied by considering the alignment of the MWCNTs. The EMI SE decreased with an increase in the alignment of the injection-molded MWCNTs in the PS matrix. This study shows that mold designs and processing conditions significantly influence the electrical conductivity and shielding behavior of injection molded CNT-filled composites.  相似文献   

11.
With the rapid development of flexible electronics, the demand for flexible electromagnetic interference (EMI) shielding materials is increasing. This study develops a new green and effective strategy, consisting of graphene oxide (GO) and cellulose nanofibrils (CNF) co-stabilized Pickering emulsion combined with hot-pressing technology, to prepare flexible and conductive nitrile rubber (NBR) composite films. The composite films consist of a 3D network conductive skeleton structure of reduced GO (RGO) and an isolated NBR structure. This specific design results in a maximum high conductivity of 99 S m−1, which is higher by an order of magnitude compared with that of the composites obtained using the traditional solution blending method, and a stable EMI shielding effectiveness of 25.81 dB in the X band. The introduction of the flexible NBR results in the excellent flexibility and structural strength of the composite film, and exhibits a decrease of 2.51% in the EMI shielding efficacy after 5000 cycles. As a piezoresistive sensor for wearable devices, the CNF-RGO/NBR flexible film can hold precise current signals and respond to finger motion. The findings of this study can provide new insights for the design of conductive and flexible composites as wearable and portable medical equipment and electronic devices.  相似文献   

12.
To shield undesirable electromagnetic waves caused by electronic devices and simultaneously resolve the flame safety of the electronic components, an electromagnetic interference (EMI) shielding material with excellent flame‐retardant properties is urgently needed. The synergistic effect of the intumescent flame retardant (IFR) and multiwalled carbon nanotubes (MWCNTs) for polystyrene (PS) nanocomposites prepared by melt blending was investigated. The results show that addition of certain amounts of IFRs facilitated the dispersion of MWCNTs in the PS matrix, and the percolation threshold of the MWCNTs in the PS matrix also decreased from 1.67 ± 0.05 to 1.29 ± 0.04 wt %. Moreover, the EMI shielding efficiencies (SEs) of the PS–MWCNT–IFR composites were consistently higher than those of the PS–MWCNT composites without the addition of the IFRs at the same MWCNT content; this indicated that the synergistic effect of the MWCNTs and IFRs effectively improved the EMI SE of the PS–MWCNT–IFR composites. Furthermore, the limiting oxygen index (LOI) testing results show that the LOI values of the PS–MWCNT composites were consistently higher than 27%; this indicated that the PS–MWCNT composites effectively met the needs of flame safety; this indicated that the PS–MWCNT–IFR composite is a novel and promising candidate for an ideal EMI shielding material with excellent flame‐retardant properties for today's electronic devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45088.  相似文献   

13.
Electromagnetic interference (EMI) is an increasingly severe issue in modern life and high-performance EMI shielding materials are in desperate need. To achieve high EMI shielding effectiveness (EMI SE), a series of polybenzoxazine/graphene composites foams are developed using a simple sol–gel method. When the graphene loading increases from 1 to 20 wt%, the density of the composites foams drops from 0.4143 g/cm3 to 0.1654 g/cm3. Meanwhile, an electrically conductive path is formed at around 7 wt% of graphene. Below the percolation threshold, the dielectric constant increases with graphene content and composite foam with 5 wt% graphene shows dielectric constant of 10.8 (1 MHz). At the highest graphene content of 20 wt%, the electric conductivity reaches 0.02 S/cm, 10 orders of magnitude higher than pure polybenzoxazine foam. Benefiting from the high electrical conductivity and lightweight porous structure, the composite foam PF/20G delivers an EMI SE of 85 dB and a specific SE of 513.9 dB·cm3/g. Importantly, the EMI shielding is dominated by absorption attenuation, with PF/20G shows absorption ratio higher than 98% in the range of 8.4–11.0 GHz, which is believed to be caused by multiple internal reflection and absorption inside the conductive foam.  相似文献   

14.
This study presents the preparation of electrically conducting poly(ε‐caprolactone) (PCL)/multiwall carbon nanotube (MWCNT) composites with very low percolation threshold (pc). The method involves solution blending of PCL and MWCNT in the presence of commercial PCL beads. The PCL beads were added into high viscous PCL/MWCNT mixture during evaporation of solvent. Here, the used commercial PCL polymer beads act as an ‘excluded volume’ in the solution blended PCL/MWCNT region. Thus, the effective concentration of the MWCNT dramatically increases in the solution blended region and a strong interconnected continuous conductive network path of CNT−CNT is assumed throughout the matrix phase with the addition of PCL bead which plays a crucial role to improve the electromagnetic interference shielding effectiveness (EMI SE) and electrical conductivity at very low MWCNT loading. Thus, high EMI SE value (∼23.8 dB) was achieved at low MWCNT loading (1.8 wt %) in the presence of 70 wt % PCL bead and the high electrical conductivity of ∼2.49×10−2 S cm−1 was achieved at very low MWCNT loading (∼0.15 wt %) with 70 wt % PCL bead content in the composites. The electrical conductivity gradually increased with increasing the PCL bead concentration, as well as, MWCNT loading in the composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42161.  相似文献   

15.
This article describes the synthesis and characterization of highly conductive polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites prepared by in situ polymerization of pyrrole using 5‐sulfoisophthalic acid monolithium salt [lithio sulfoisophthalic acid (LiSiPA)] as dopant and ferric chloride as oxidant. Several samples were prepared by varying the amounts of MWCNTs ranging from 1 to 5 wt %. Scanning electron microscope and transmission electron microscope images clearly show a thick coating of PPy on surface of MWCNTs. The electrical conductivity of PPy increased with increasing amount of MWCNTs and maximum conductivity observed was 52 S/cm at a loading of 5 wt % of MWCNTs. Pure PPy prepared under similar conditions had a conductivity of 25 S/cm. Electromagnetic interference (EMI) shielding effectiveness (SE) also showed a similar trend and average EMI shielding of ?108 dB (3 mm) was observed for sample having 5 wt % MWCNT in the frequency range of 8.2–12.4 GHz (X‐band). The light weight and absorption dominated total SE of ?93 to ?108 dB of these composites indicate the usefulness of these materials for microwave shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45370.  相似文献   

16.
Novel foam composites comprising functionalized graphene (f‐G) and polyvinylidene fluoride (PVDF) were prepared and electrical conductivity and electromagnetic interference (EMI) shielding efficiency of the composites with different mass fractions of f‐G have been investigated. The electrical conductivity increases with the increase in concentration of f‐G in insulating PVDF matrix. A dramatic change in the conductivity is observed from 10?16 S · m?1 for insulating PVDF to 10?4 S · m?1 for 0.5 wt.% f‐G reinforced PVDF composite, which can be attributed to high‐aspect‐ratio and highly conducting nature of f‐G nanofiller, which forms a conductive network in the polymer. An EMI shielding effectiveness of ≈20 dB is obtained in X‐band (8–12 GHz) region and 18 dB in broadband (1–8 GHz) region for 5 wt.% of f‐G in foam composite. The application of conductive graphene foam composites as lightweight EMI shielding materials for X‐band and broadband shielding has been demonstrated and the mechanism of EMI shielding in f‐G/PVDF foam composites has been discussed.

  相似文献   


17.
As a surface modified zinc oxide, stearic acid‐coated nano zinc oxide (ZOS) has been prepared by sol‐gel method and was used along with N‐benzylimine aminothioformamide‐N‐cyclohexyl benzthiazyl sulfonamide binary accelerator system, multiwalled carbon nanotube (MWCNT) and sulfur for vulcanizing 20/80 natural rubber/nitrile rubber (NR/NBR) blend. Different formulations have been prepared by using 1–7 phr of MWCNT. Solvent transport and electrical properties of the rubber compounds have been investigated. The equilibrium solvent uptake (Q) decreased with increase in concentration of the filler due to the decrease in the free volume and the increase in tortuousity. The conductivities of the vulcanizates increased with increase in the dosage of MWCNT from 1 phr in NBCNT1 to 7 phr in NBCNT4 indicating the formation of percolating network of MWCNTs in the NBR/NR matrix. POLYM. COMPOS., 35:956–963, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
In this study, acrylonitrile–butadiene rubber (NBR) was melt‐mixed with multiwalled carbon nanotubes (MWCNTs). Because the electrical conductivity and mechanical properties of composites are strongly influenced by the filler's state of dispersion and the extent of filler breakage during processing, the processing conditions are very important parameters. The effects of the mixing time, rotor speed, cooling rate, and sulfur concentration on the surface resistivity were investigated. Increasing the rotor speed from 20 to 60 rpm at mixing times of 15 and 30 min led to an increase in the surface resistivity from around 104 to 1011 Ω/square. However, at a mixing time of 7 min, the surface resistivity slightly decreased with increasing rotor speed. When slow cooling was applied, a surface resistivity of 104 Ω/square was obtained at around 2‐phr MWCNTs. However, when the fast cooling was applied, a surface resistivity of 106 Ω/square was obtained at 5‐phr MWCNTs. The tensile strength and tensile modulus at 300% elongation were improved with the addition of MWCNTs into NBR. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Composites with silica matrix and mixed filler of multiwalled carbon nanotubes (MWCNTs) and BaTiO3 powder were fabricated. Excellent uniform dispersion of MWCNTs can be obtained using a two-step mixing method. Both of the real and imaginary parts of complex permittivity increased with increasing MWCNT content and measured temperature. The electromagnetic interference (EMI) shielding results showed that the absorption mechanism is the main contribution to the total EMI shielding effectiveness (SE). Compared with the EMI SE resulting from reflection, the absorption showed more dependence on the MWCNT content, measured temperature and frequency. The total EMI SE is greater than 20 dB at 25 °C and 50 dB at 600 °C in the whole frequency range of 12.4–18 GHz with a 1.5 mm composite thickness, which suggests that the MWCNT–BaTiO3/silica composites could be good candidates for the EMI shielding materials in the measured frequency and temperature region.  相似文献   

20.
丁腈橡胶/膨胀石墨导电纳米复合材料的制备和性能   总被引:11,自引:0,他引:11  
采用熔融插层法制备了丁腈橡胶/膨胀石墨纳米复合材料。扫描电镜(SEM)研究表明,超声处理后的膨胀石墨薄片厚度为纳米级。透射电镜(TEM)研究证实,膨胀石墨确以纳米级尺寸分散在橡胶基体中。力学性能研究表明,填加5份膨胀石墨时,纳米复合材料的拉伸强度最大,为28·4MPa,是不含膨胀石墨的复合材料的1·8倍。导电性能研究显示,填加10份膨胀石墨时,纳米复合材料的表面电导率和体积电导率分别为1·1×10-9S/cm和1·2×10-9S/cm,是不含膨胀石墨的复合材料的100倍和43倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号