首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin E stabilization of radiation‐crosslinked ultrahigh‐molecular‐weight polyethylene (UHMWPE) joint implants was successfully introduced to improve long‐term oxidation resistance. Current clinically available vitamin E stabilized UHMWPE implants were prepared by the postirradiation diffusion of vitamin E into 100‐kGy‐irradiated UHMWPE by a two‐step process, which included doping in pure vitamin E at an elevated temperature below the melting point followed by an annealing step at an elevated temperature in inert gas to homogenize the antioxidant throughout components of desired thickness. We hypothesized that the diffusion of vitamin E could be enhanced with supercritical carbon dioxide (SC‐CO2) during homogenization without an increase in the surface vitamin E concentration, which would thus result in faster homogenization. Our hypothesis tested positive; crosslinked UHMWPE doped with vitamin E at 120°C and homogenized in SC‐CO2 at 10–12 MPa had a greater penetration of vitamin E than those homogenized in inert gas. We attributed the faster diffusion of vitamin E in irradiated UHMWPE in SC‐CO2 to the dissolution of vitamin E in the supercritical fluid and a rate of diffusion that was closer to that of the supercritical fluid in the polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Specific pore structure is a vital essential for scaffolds applied in tissue engineering. In this article, poly(lactide‐co‐glycolide) (PLGA) scaffolds with a bimodal pore structure including macropores and micropores to facilitate nutrient transfer and cell adhesion were fabricated by combining supercritical CO2 (scCO2) foaming with particle leaching technique. Three kinds of NaCl particles with different scales (i.e., 100–250, <75, <10 μm) were used as porogens, respectively. In particular, heterogeneous nucleation occurred to modify scCO2 foaming/particle leaching process when NaCl submicron particles (<10 μm) were used as porogens. The observation of PLGA scaffolds gave a formation of micropores (pore size <10 μm) in the cellular walls of macropores (pore size around 100–300 μm) to present a bimodal pore structure. With different mass fractions of NaCl introduced, the porosity of PLGA scaffolds ranged from 68.4 ± 1.4 to 88.7 ± 0.4% for three NaCl porogens. The results of SEM, EDS, and in vitro cytotoxicity test of PLGA scaffolds showed that they had uniform structures and were compatible for cell proliferation with no toxicity. This novel scCO2 foaming/particle leaching method was promising in tissue engineering due to its ability to fabricate scaffolds with precise pore structure and high porosity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43644.  相似文献   

3.
BaTiO3 powders from sol-gel derived gels were prepared using two different drying methods. In addition to the conventional drying of gels in air at 90°C the supercritical CO2 drying method was also used. Results showed that the properties of BaTiO3 powder produced by supercritical drying with CO2 are better. The grain surface is less contaminated as a result of the supercritical drying and the microstructure development during sintering leads to a homogeneous fine-grained microstructure.  相似文献   

4.
In this work, a chitosan sample with a high degree of deacetylation (DD >95%) obtained from freshwater shrimp shells was subjected to drying processes in an electric oven and by supercritical CO2. The results indicated that drying chitosan particles with supercritical CO2 resulted in a very significant increase in specific surface area and pore volume, and also increased the material's crystallinity index. This drying route led to a more than 10‐fold reduction in viscosimetric molecular weight (from 35.3 to 3.0 kDa), indicating that the physical drying process caused the chitosan to depolymerize, which usually occurs by enzymatic and chemical methods, according to the literature. Low molecular weight chitosan is essential for some applications in the field of biomedicine (drug delivery for example); hence, drying via the CO2 route can be considered a promising technique for the production of high value‐added materials with applications in this area. POLYM. ENG. SCI., 55:1969–1976, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
A biomimetic nanofibrous poly(L ‐lactide) scaffold strengthened by nanohydroxyapatite particles was fabricated via a thermally induced phase separation technique. Scanning electron microscopy results showed that nanohydroxyapatite particles uniformly dispersed in the nanofibrous poly(L ‐lactide) scaffold (50–500 nm in fiber diameter) with slight aggregation at a high nHA content, but showed no influence on the interconnected macroporous and nanofibrous structure of the scaffold. The nanofibrous poly(L ‐lactide) scaffold presented a specific surface area of 34.06 m2 g?1, which was much higher than that of 2.79 m2 g?1 for the poly(L ‐lactide) scaffold with platelet structure. Moreover, the specific surface area of the nanofibrous scaffold was further enhanced by incorporating nanohydroxyapatite particles. With increasing the nanohydroxyapatite content, the compressive modulus and amount of bovine serum albumin adsorbed on the surface of the nanofibrous composite scaffold were markedly improved, as opposed to the decreased crystallinity. In comparison to poly(L ‐lactide) scaffold, both the nanofibrous poly(L ‐lactide) and poly(L ‐lactide)/nanohydroxyapatite scaffolds exhibited a faster degradation rate for their much larger specific surface area. The culture of bone mesenchymal stem cell indicated that the composite nanofibrous poly(L ‐lactide) scaffold with 50 wt % nanohydroxyapatite showed the highest cells viability among various poly(L ‐lactide)‐based scaffolds. The strengthened biomimetic nanofibrous poly(L ‐lactide)/nanohydroxyapatite composite scaffold will be a potential candidate for bone tissue engineering. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
The present study reports foaming of polycaprolactone (PCL) and PCL nano- and micro-composites with dispersed hydroxyapatite (HA) particles by means of binary mixtures of supercritical CO2 (scCO2) and either ethyl lactate (EL) or ethyl acetate (EA) as plasticizer. The effect of the size and concentration of HA particles, as well as the effects of the plasticizer type and the incorporation route were investigated aiming to fabricate porous scaffolds with uniform morphology and controlled pore size distribution. For this purpose, foaming experiments were carried out by selecting two operating temperatures, 40 and 45 °C, and two soaking times, 1 and 17 h. Furthermore, a double step of depressurization was used to promote the development of a double-scale pore size structure in porous scaffolds useful for tissue engineering.The results of this study indicated that supercritical foaming of PCL and PCL–HA composites is enhanced when the selected operating temperature and time are 45 °C and 17 h, respectively. Furthermore, although both EL and EA plasticizers enhanced the low temperature foaming of the materials, we demonstrated that the route of incorporation of the plasticizer is a critical aspect for enhancing composite foaming and scaffold fabrication. From this point of view, the best results were achieved when EA was pre-mixed with the polymeric powder for preparing a dough for the foaming process.  相似文献   

7.
Copper‐encapsulated polystyrene nanocomposite particles were prepared through ex situ dispersion of Cu nanoparticles into monomer droplets and subsequent polymerization using water in supercritical carbon dioxide (water‐in‐sc‐CO2) at 70°C. First, colloidal dispersion of copper nanoparticles was synthesized by chemical reduction of copper chloride (CuCl2) using sodium borohydrate (NaBH4) as reducing agent. Colloidal dispersion of copper nanoparticles was added slowly during the polymerization of styrene using water‐in‐sc‐CO2 medium at 70°C and 20.68 MPa. Cu nanoparticle encapsulated polymer particles were characterized by UV, X‐ray diffraction, thermogravimetric analysis, SEM, and TEM. Cu nanoparticles were uniformly distributed inside the polymer matrix during the polymerization process. This work represents a simple way to prepare a variety of metal nanoparticles encapsulated polymer particles using water‐in‐sc‐CO2 medium. The Cu/polystyrene nanocomposite particles exhibit antimicrobial activity against a number of bacteria. The current work represents a simple, cheap and universal way to prepare a variety of metal–polymer nanocomposite materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Composite Scaffolds have received much attention in the tissue engineering, and how to choose the materials has become the research focus in this field. Supercritical CO2 (ScCO2)‐induced phase separation process was employed to prepare porous poly‐L ‐lactide (PLLA) composite scaffolds. An experiment system was set up for the purpose of investigating the effects of such parameters as the mass ratios of PLLA to polyethylene glycol (PEG) and PLLA to β‐TCP on porosity and compressive strength of composite scaffolds. The obtained composite scaffolds were characterized in many ways. Scanning electron microscopy was used to examine the morphology and pore size; porosity was analyzed by pycnometer; and the compressive strength was recorded by texture analyzer. The results indicated that the porosity was increased with the addition of PEG, and the highest porosity of PLLA/PEG composite scaffolds was 92% with the mass ratio of PLLA to PEG of 1:0.05; the compressive strength was increased with the addition of β‐TCP, and the highest compressive strength of PLLA/β‐TCP composite scaffolds was 1.76 MPa with the mass ratio of PLLA to β‐TCP of 1:0.1. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

9.
Inducing differentiation of bone marrow stem cells to generate new bone tissue is highly desirable by controlling the release of some osteoinductive or osteoconductive factors from porous scaffolds. In this study, dexamethasone was selected as a representative of small molecule drugs and dexamethasone‐loading porous poly(lactide‐co‐glycolide) (PLGA) scaffolds were successfully fabricated by supercritical CO2 foaming. Scanning electron microscopy images showed that scaffolds had rough and relatively interconnected pores facilitating cells adhesion and growth. Specially, dexamethasone which was incorporated into PLGA matrix in a molecularly dispersed state could serve as a nucleation agent to be helpful for the formation of interconnected pores. Dexamethasone‐loading porous PLGA scaffolds exhibited sustained release profile, and the delivery of dexamethasone from porous scaffolds could last for up to 2 months. The cumulative released amount of dexamethasone was relevant with drug loading capacity (1.66%–2.95%) and pore structure of scaffolds; while the release behavior was anomalous (non‐Fickian) transport by fitting with the simple exponential equation, which had a diffusional exponent n higher than 0.5. It is feasible to fabricate drug‐loading porous scaffolds by supercritical CO2 foaming with specific pore structure and sustained release profile, which can be well applied in bone tissue engineering. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46207.  相似文献   

10.
Biocompatible three-dimensional scaffolds for cell culturing may facilitate methods for the repair of damaged human tissues. A novel hybrid porous scaffold of poly(lactic-co-glycolic acid), hydroxyapatite and collagen was prepared using a supercritical CO2 saturation technique. Expansion factors of scaffolds with different compositions were studied after supercritical CO2 treatment to choose the optimal composition for three-dimensional culture. The supercritical CO2 process conditions, such as saturation temperature, saturation time and saturation pressure were varied to evaluate their influence on pore structure. The results showed that the pore size and porosity of the scaffold could be controlled by manipulating these process conditions. The porous samples were characterized by environmental scanning electron microscopy, energy-dispersive X-ray spectroscope, Fourier transform infrared spectroscopy and X-ray diffractometry. Finally, MG-63 cells were successfully cultured on the porous scaffold as assessed by electron and confocal microscopy, confirming the biocompatibility of this new hybrid porous scaffold.  相似文献   

11.
Resorcinol–formaldehyde/alumina composite (RF/Al2O3) gels were initially prepared using sol–gel techniques, and then dried to aerogels with supercritical fluid CO2. RF/Al2O3 aerogels were successfully converted to monolithic carbon/alumina composite (C/Al2O3) aerogels after carbonization under flowing Ar at 800 °C. The samples were characterized by Brunauer–Emmett–Teller, scanning electron microscopy, transmission electron microscope and X-ray diffraction, and the compressive strengths were also measured. The results indicated that the resulting C/Al2O3 aerogels prepared from hydrated AlCl3 possessed microstructures containing highly reticulated networks of fibers, 2–5 nm in diameter and of varying lengths, whereas the samples prepared from hydrated Al(NO3)3 were amorphous with microstructures comprised of interconnected spherical particles with diameters in the 5–15 nm range and the alumina were surrounded by amorphous carbon. The difference in microstructure resulted in each type of aerogels displaying distinct physical and mechanical properties. In particular, the as-prepared C/Al2O3 aerogels with the weblike microstructure were far more mechanically robust than those with the colloidal network. Correspondingly, the compressive strengths are 5.6 and 2.8 MPa, respectively.  相似文献   

12.
Superabsorbent resins prepared by ultraviolet radiation‐inducing polymerization techniques with acrylic acid/acrylamide were treated with supercritical carbon dioxide (SC‐CO2). The water‐absorbing properties of the treated resins were greatly improved. The water‐absorbing properties of resins treated with SC‐CO2 in the pressure range of 10–35 MPa and the temperature range of 40–60°C were studied. The effects of the treatment time and depressurizing speed of CO2 after treatment were also examined. Obviously, different results were found for particles of different sizes. Smaller particles were more efficient under the same treatment conditions. Samples were tested with differential scanning calorimetry. The results showed that the plasticizing effect of CO2 reduced the glass‐transition temperature of the polymer, and it was proposed that the plasticization effect might have led to polymer chain redistribution and better flexibility. Minor changes in the surface morphology of the particles were observed with scanning electron microscopy. The extraction of the unpolymerized monomers by SC‐CO2 was also studied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2272–2278, 2002  相似文献   

13.
Porous Poly‐l ‐lactide (PLLA) scaffolds and PLLA/nanohydroxyapatite (nHA) composite scaffolds with interconnected pore networks and a porosity of over 90% were fabricated with lyophilization techniques. In this study, the degradation behavior of PLLA and PLLA/nHA composite scaffolds is investigated over 8 weeks in phosphate buffer solution at 37°C. Thermal analysis using differential scanning calorimetry (DSC) showed that the percent crystallinity of all the samples increased by approximately 10%, which represents a considerable increase in the glass transition temperature. The melting range enthalpy of the scaffolds did not change to lower temperatures as would be expected. The spectroscopic analysis performed by Fourier transform infrared spectroscopy suggested that nHA particles should not appreciably affect the absorbance pattern when evenly mixed with the PLLA. This is consistent with the analysis of the scaffold microstructure and morphology with scanning electron microscopy, which drew a low content of nHA with no significant effect on solvent crystallization or pore structure. The compressive modulus and the yield strength of the scaffolds were investigated in conjunction with the study of their degradation rates. In comparison with the mechanical properties of the PLLA scaffolds, which remained largely unchanged, those of the PLLA/nHA composite scaffolds decreased as the degradation progressed. POLYM. ENG. SCI., 54:2571–2578, 2014. © 2013 Society of Plastics Engineers  相似文献   

14.
Collagen–chitosan scaffolds of different compositions were developed using emulsion air‐drying method. The scaffolds prepared adding 10–30 wt% of chitosan to collagen improved the mechanical properties of the composite scaffold, and 7:3 ratio (collagen :chitosan) was found to be a better composite having a tensile strength of 13.57 MPa with 9% elongation at break. The water‐uptake characteristics were performed at different pH and found to be ameliorated for the composite scaffolds compared to pure collagen and chitosan scaffold, respectively. The pores ranging from 100 to 300 μm were well interconnected, and their distribution was fairly homogeneous in the scaffold as observed through scanning electron microscopy. Furthermore, the scaffold decreased the bacterial counts and supported fibroblasts attachment and proliferation, thus demonstrating this composite to be a good substrate for biomedical application.POLYM. COMPOS., 33:2029–2035, 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
Porous particles with amphiphilicity were prepared by a nonpolymeric pore‐formation process with the sulfonation of polystyrene microspheres. Nano titanium dioxide (TiO2) particles were then grafted onto the surface via a sol–gel method to finally form the composite particles. The effects of the mass ratio of ethanol (EtOH) to water, temperature, and solubility parameter on the pore‐formation process is discussed in detail. The morphology, porous structure, and wetting properties of the particles were studied by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and contact angle measurement. The results show that porous sulfonated polystyrene (SP) microspheres could be fabricated at 60°C with a 1 : 1 mass ratio of EtOH–water and a solubility parameter of 29.69 MPa1/2. The TiO2 particles were determined to be grafted onto the SP microspheres by physical‐bond interaction on the basis of FTIR analysis. The contact angles for both water (aqueous‐phase) and various organic solvent (oil‐phase) droplets with different polarities on the surface of compressed tablets of TiO2–SP powder were all lower than 30°; this indicated excellent amphiphilicity in the composite particles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Porous chitosan scaffolds were prepared with a freeze‐casting technique with different concentrations, 1.5 and 3 wt %, and also different cooling rates, 1 and 4°C/min. The pore morphology, porosity, pore size, mechanical properties, and water absorption characteristics of the scaffolds were studied. Scanning electron microscopy images showed that the freeze‐cast scaffolds were fully interconnected because of the existence of pores on the chitosan walls in addition to many unidirectionally elongated pores. Increases in the chitosan concentration and freezing rate led to elevations in the thickness of the chitosan walls and reductions in the pores size, respectively. These two results led to the enhancement of the compressive strength from 34 to 110 kPa for the scaffolds that had 96–98% porosity. Also, augmentation of the chitosan concentration and decreases in the freezing rate led to the reduction of the number of pores on the chitosan walls. Furthermore, the volume of water absorption increased with a reduction in the chitosan concentration and cooling rate from 690 to 1020%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41476.  相似文献   

17.
Improvements in carbon nanotube (CNT) dispersion and subsequent mechanical properties of CNT/poly(phenylsulfone) (PPSF) composites were obtained by applying the supercritical CO2 (scCO2)‐aided melt‐blending technique that has been used in our laboratory for nanoclay/polymer composite preparation. The preparation process relied on rapid expansion of the CNTs followed by melt blending using a single‐screw extruder. Scanning electronic microscopy results revealed that the CNTs exposed to scCO2 at certain pressures, temperatures, exposure time, and depressurization rates have a more dispersed structure. Microscopy results showed improved CNT dispersion in the polymer matrix and more uniform networks formed with the use of scCO2, which indicated that CO2‐expanded CNTs are easier to disperse into the polymer matrix during the blending procedure. The CNT/PPSF composites prepared with scCO2‐aided melt blending and conventional melt blending showed similar tensile strength and elongation at break. The Young's modulus of the composite prepared by means of conventional direct melt blending failed to increase beyond the addition of 1 wt% CNT, but the scCO2‐aided melt‐blending method provided continuous improvements in Young's modulus up to the addition of 7 wt% CNT. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
《Ceramics International》2016,42(12):13761-13772
The incorporation of a bioactive inorganic phase in polymeric scaffolds is a good strategy for the improvement of the bioactivity and the mechanical properties, which represent crucial features in the field of bone tissue engineering. In this study, spray-dried mesoporous bioactive glass particles (SD-MBG), belonging to the binary system of SiO2-CaO (80:20 mol%), were used to prepare composite scaffolds by freeze-drying technique, using a silk fibroin matrix. The physico-chemical and biological properties of the scaffolds were extensively studied. The scaffolds showed a highly interconnected porosity with a mean pore size in the range of 150 µm for both pure silk and silk/SD-MBG scaffolds. The elastic moduli of the silk and silk/SD-MBG scaffolds were 1.1±0.2 MPa and 6.9±1.0 MPa and compressive strength were 0.5±0.05 MPa and 0.9±0.2 MPa, respectively, showing a noticeable increase of the mechanical properties of the composite scaffolds compared to the silk ones. The contact angle value decreased from 105.3° to 71.2° with the incorporation of SD-MBG particles. Moreover, the SD-MBG incorporation countered the lack of bioactivity of the silk scaffolds inducing the precipitation of hydroxyapatite layer on their surface already after 1 day of incubation in simulated body fluid. The composite scaffolds showed good biocompatibility and a good alkaline phosphatase activity toward human mesenchymal stromal cells, showing the ability for their use as three-dimensional constructs for bone tissue engineering.  相似文献   

19.
Composite scaffolds for applications in bone engineering from poly(D,L ‐lactide) (PDLLA) incorporated with different proportional bioactive wollastonite powders were prepared through a salt‐leaching method, using NH4HCO3 as porogen. The pore structures and morphology of the scaffolds were determined by scanning electron microscopy (SEM). The bioactivity of composite materials was evaluated by examining its ability to initiate the formation of hydroxyapatite (Ca10(PO4)6(OH)2)(HAp) on its surface when immersed in simulated body fluids (SBF). The in vitro degradation behaviors of these scaffolds were systematically monitored at varying time periods of 1, 2, 4, 6, 8, 11, 14, 17, 20, 24, and 28 weeks postimmersion in SBF at 37°C. FT‐IR, XPS, XRD, and SEM measurements revealed that hydroxyapatite commenced to form on the surface of the scaffolds after 7 days of immersion in SBF. The measurements of weight loss, pH, and molecular weight of the samples indicated that PDLLA/wollastonite composite scaffolds degraded slower than the pure PDLLA scaffolds do. Addition of wollastonite enhanced the mechanical property of the composite scaffolds. The in vitro osteoblast culture experiment confirmed the biocompatibility of the scaffold for the growth of osteo‐blasts. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009.  相似文献   

20.
In this work, the preparation and characterization of a novel multifunctional collagen–chitosan material containing silver nanoparticles and nonsteroid anti‐inflammatory drug ibuprofen is described. As a starting material, the commercially available collagen–chitosan scaffold was used. Drug‐loading procedure was performed via supercritical CO2‐assisted impregnation technique. Silver nanoparticles were prepared via metal vapor synthesis and introduced into the composite biopolymer matrix. An analysis of the small‐angle X‐ray scattering profiles revealed that silver nanoparticles are characterized by having a logarithmic normal size distribution with the maximum at 25 nm. The average size of particles determined from the broadening of diffraction peaks is in a good agreement with this result. The surface of the materials was characterized by X‐ray photoelectron spectroscopy. The in vitro release kinetics of ibuprofen in phosphate buffer solution with pH = 7.4 from prepared materials was studied. The drug release to solution is governed by Fickian diffusion and can be described within the Ritger–Peppas model. Introduction of silver nanoparticles has no effect on the diffusion mechanism. The as‐prepared materials are promising for the medical applications such as dressings for treatments of infected wounds and infection preventing. These materials can act as a matrix for transdermal drug administration. POLYM. ENG. SCI., 59:2479–2487, 2019. © 2019 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号